

الرياضيات المتقدم

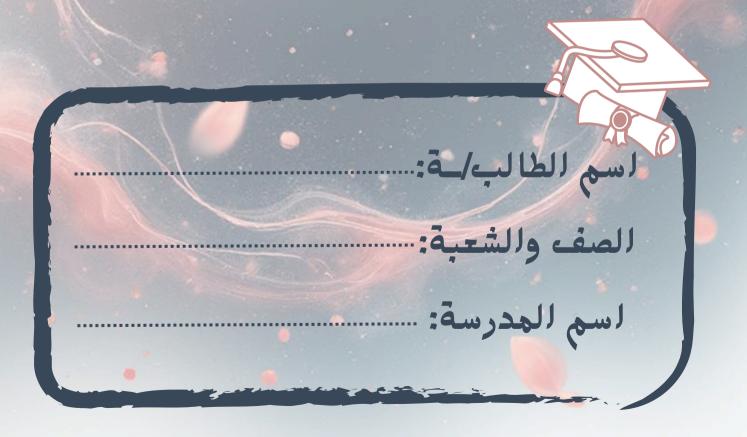
الوحدة الثالثة

الثماضل وتطبيقات

الدروس الثلاث الأولى

إعداد المعلم: أ.أحمد محمد البشايرة 0799819016

توجيهي 2008 الطليحة



القهرس

الدرس الثالث قاعدة السلسلة

رقم الصفحة	الموضوع
39 - 50	 مقدمة الدرس + أتحقق من فهمي
50 - 58	 أتدرب وأحل الهسائل
59 - 62	مهارات التفكير العليا
63 - 69	السئلة كتاب التمارين

الدرس الأول مشتقة اقترانات خاصة

رقم الصفحة	الهوضوع
4 - 12	■ هقدهة الدرس + أتحقق هن فهمي
12 - 15	هقدهة الدرس + أتحقق من فهمي أتدرب وأحل الهسائل ههارات التفكير العليا أسئلة كتاب التهارين
15 - 17	 حهارات التفكير العليا
18 – 19	 أسئلة كتاب التهارين

الأستاذ أحمدالبشايرة

الدرس الثاني مشتقتا الضرب والقسمة والمشتقات العليا

رقم الصفحة	الموضوع
20 - 26	■ هقدهة الدرس + أتحقق هن فهمي
27 - 33	أتدرب وأحل الهسائل مهارات التفكير العليا أسئلة كتاب التهارين
33 - 35	 ههارات التفكير العليا
35 - 38	 أسئلة كتاب التهارين

الدرس الأول

مشتقة ل<mark>قترلنات خاصة</mark>

Differentiation of Special Functions

.
$$\lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x} = 1$$
 أُلاحِظ من الجدول السابق أنَّ

إذن، ميل المماس عند النقطة (x, y) هو:

$$m = f'(x) = e^x \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x} = e^x$$

وهــذا يعنــي أنَّ ميل المماس عنــد أيِّ نقطة تقع علــي منحني الاقتران الأُسِّي الطبيعي هو الإحداثي y لهذه النقطة.

مشتقة الاقتران الأُسُب الطبيعب

نظرية

إذا كان: e^x حيث e^x العدد النبيري، فإنَّ:

$$f'(x) = e^x$$

أتذكّر

يُسمّى العدد e الأساس الطبيعي، أو العدد النيبيري؛ وهمو عدد غير نسبي، ويُسمّى الاقتران: الاقتسران $f(x) = e^x$ الأُسِّي الطبيعي.

أتذكّر

ميل المماس عند نقطة ما يساوي مشتقة الاقتران عند هذه النقطة.

تنبيه

لا تُعَـدُّ الإجـراءات التي سبقت النظرية برهائ عليها، وإنَّما تُمهِّد للنظرية، و تُقدُّم تصوُّرًا لها.

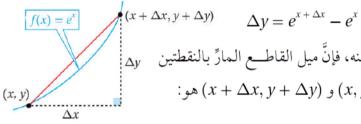
مشتقة الاقتران الأُسِّي الطبيعي

تعلَّمْتُ سابقًا إيجاد مشتقة الاقتران الثابت ومشتقة اقتران القوَّة باستعمال قو اعد خاصة.

وساً تعلُّم الآن إيجاد مشتقة الاقتران الأُسِّي الطبيعي، ومشتقة الاقتران اللوغاريتمي الطبيعي، ومشتقة اقتران الجيب، ومشتقة اقتران جيب التمام.

أفترض أنَّ (x,y) و (x,y) و (x,y) نقطتان، كلًّ منهما $f(x)=e^{x}$:قريبة من الأُخرى، وأنَّهما تقعان على منحنى الاقتران

إذن، الفرق بين الإحداثي لا للنقطتين هو:



 $_{\Delta y}$ ومنه، فإنَّ ميل القاطع المارِّ بالنقطتين و :هو $(x + \Delta x, y + \Delta y)$ و (x, y)

$$\frac{\Delta y}{\Delta x} = \frac{e^{x + \Delta x} - e^x}{\Delta x} = \frac{e^x (e^{\Delta x} - 1)}{\Delta x}$$

إذن، ميل المماس عند النقطة (x, y) هو:

$$m = f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^x (e^{\Delta x} - 1)}{\Delta x} = e^x \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}$$
 إذان ما قيمة: $\frac{e^{\Delta x} - 1}{\Delta x}$: ولكن ، ما قيمة

. $\lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}$: يُمكِن الاستعانة بجدول القِيَم الآتي لإيجاد قيمة

Δx	-0.1	-0.01	-0.001	0.001	0.01	0.1
$\frac{e^{\Delta x}-1}{\Delta x}$	0.9516	0.9950	0.9995	1.0005	1.0050	1.0517

🧥 أتحقَّق من فهمي

أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = 5e^x + 3$$

b)
$$f(x) = \sqrt{x} - 4e^x$$

c)
$$y = 8e^x + \frac{4}{\sqrt[5]{x}}$$

مثال 1

أجد مشتقة كل اقتران ممّا يأتي:

$$1 f(x) = 3e^x$$

$$f(x) = 3e^x$$
 الاقتران المعطى

$$f'(x)=3e^x$$
قاعدتا مشتقة مضاعفات الاقتران، ومشتقة الاقتران الأُسِّى الطبيعى

أتذكَّر

- (af(x))' = af'(x)
- $\bullet (x^n)' = nx^{n-1}$
- $(f\pm g)'(x) =$ $f'(x)\pm g'(x)$

$$2 f(x) = x^2 + e^x$$

$$f(x) = x^2 + e^x$$
الاقتران المعطى

$$f'(x) = 2x + e^x$$
 والمجموع، والمجموع، والمبيعي والاقتران الأُسِّي الطبيعي

$$y = \frac{\sqrt[3]{x} - 2xe^x}{x}$$

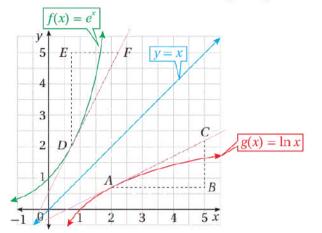
5

$$y=rac{\sqrt[3]{x}-2xe^x}{x}=rac{\sqrt[3]{x}}{x}-rac{2xe^x}{x}$$
 لبسط $=rac{x^{1/3}}{x}-rac{2xe^x}{x}$ لبكتابة الاقتران في صورة أُسِّية $=x^{-2/3}-2e^x$ لبلتبسيط $=x^{-2/3}-2e^x$ لبلتبسيط $=x^{-2/3}-2e^x$ لبلتبسيط $=x^{-2/3}-2e^x$ لبلتبسيط $=x^{-2/3}-2e^x$ لبلتبسيط $=x^{-2/3}-2e^x$ للطبيعي، ومضاعفات الاقتران القرَّة، والصورة الجذرية $=x^{-2/3}-2e^x$ تعريف الأُسِّ السالب، والصورة الجذرية $=x^{-2/3}-2e^x$

رياضيات متقدم

مشتقة الاقتران اللوغاريتمي الطبيعي

 $g(x) = \ln x$ ، و $f(x) = e^x$ يُبِيِّن الشكل الآتي منحنيي الاقترانين:



أُلاحِظ من التمثيل البياني أنَّ ميل المماس عند النقطة A، الواقعة على منحني الاقتران:

يما أنَّ المثلث DEF هو انعكاس للمثلث ABC حول المستقيم: y = x، فإنَّهما متطابقان؛ لذا فإنَّ:

 $\frac{dy}{dx} = \frac{CB}{AB} = \frac{FE}{DE} = \frac{1}{\frac{DE}{EE}}$

وبِما أنَّ ميل المماس عند أيِّ نقطة تقع على منحني الاقتران الأُسِّي الطبيعي هو الإحداثي

y لهـذه النقطة، فهذا يعني أنَّ ميل المماس عند النقطة D هو الإحداثي y للنقطة D. وبسـبب

وبِما أَنَّ $f(x)=e^{x}$. ويما أَنَّ $f(x)=e^{x}$. ويما أَنَّ ويما أَنْ عند النقطة D ، فإنَّ المماس لمنحنى الاقتران

تعلَّمْتُ سابقًا قوانين الضرب والقسمة والقوَّة للوغاريتمات، ويُمكِنني استعمال هذه القوانين مع النظرية السابقة لإيجاد مشتقة اقتران يحوي اللوغاريتم الطبيعي.

قوانين اللوغاريتمات

مراجعة المفهوم

إذا كانت b,x,y أعدادًا حقيقيةً موجبةً، وكان p عددًا حقيقيًّا، حيث: $b \neq 1$ ، فإنَّ:

- $\log_b xy = \log_b x + \log_b y$ قانون الضرب:
- $\log_b \frac{x}{y} = \log_b x \log_b y$ قانون القسمة:
- $\log_b x^p = p \log_b x$ قانون القوَّة:

$b \neq 1$ لماذا يُشترَط أنَّ $b \neq 0$ ؟

أجد مشتقة كل اقتران ممّا يأتي:

الاقتران المعطى

$$f(x) = \ln(x^4)$$

 $f(x) = \ln(x^4)$

 $= 4 \ln x$ قانون القوَّة في اللوغاريتمات

قاعدتا مشتقة مضاعفات الاقتران، ومشتقة الاقتران اللوغاريتمي الطبيعي

$$f'(x) = \frac{4}{x}$$

2
$$f(x) = \ln(xe^x) + \ln(7x)$$

 $f(x) = \ln(xe^x) + \ln(7x)$

 $= \ln x + \ln e^x + \ln 7 + \ln x$

 $= 2 \ln x + x + \ln 7$ للوغاريتمات

 $f'(x) = \frac{2}{x} + 1$

الاقتران المعطى

قانون الضرب في اللوغاريتمات

بالتبسيط، واستعمال الخصائص الأساسية

قواعد مشتقات الاقتران اللوغاريتمي الطبيعي، واقتران القوَّة، والثابت

الانعكاس؛ فإنَّ الإحداثي y للنقطة D هو الإحداثي x للنقطة A. وبذلك، فإنَّ:

 $\frac{dy}{dx} = \frac{CB}{AB} = \frac{FE}{DE} = \frac{1}{\frac{DE}{EE}} = \frac{1}{x}$

مشتقة الاقتران اللوغاريتمي الطبيعي

الانعكاس هــو تحويل

هندسسي ينقل الشكل

الانعبكاس إلسي الجهة

العكسي لسه متماثلان y = x حول المحور

نظرية

:اذن $\frac{CB}{AB}$ مو $g(x) = \ln x$

 $\dot{\phi}(x) = \ln x$ فإنَّ: يذا كان: x > 0 حيث: $f(x) = \ln x$

$$f'(x) = \frac{1}{x}$$

يُمكِن إثبات هذه النظرية لاحقًا باستعمال الاشتقاق الضمني الوارد في الدرس الرابع من هذه الوحدة.

أتذكَّر

 $\ln e = 1$ •

- $\ln e^p = p \quad \bullet$
- إذا كان: 1 ≠ d.
- حيث: 0 > 0، فإنَّ:

 $\log_b b^x = x$

أتذكّر

اللوغاريتم الطبيعي In x هو لوغاريتم أساسه العدد

الطبيعي e، ومن المُمكِن

الأخرى على النُّعُد نفسه كتابته في صورة: log_xx. من محور الاتعكاس، من دون تغيير أبعاد الشكل أو تدويسره. بوجسه عام. فإنَّ الاقتران *J* والاقتران

مجال الاقتسران In x هو $.(0,\infty)$

أتذكَّر

الاقتسران اللوغاريتمسي $y = \ln x$:الطبيعي هــو الاقتران العكســي للاقتران الأُسِّي الطبيعي:

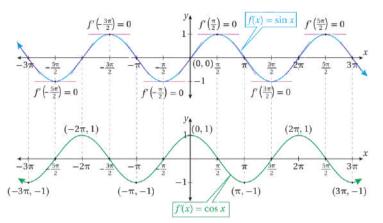
أتذكّر

أ.أحهد محمد البشايرة

🥻 أتحقَّق من فهمي

a)
$$f(x) = \sqrt{x} + \ln(4x)$$

أجد مشتقة كل اقتران ممّا يأتي:



تعلَّمْتُ سابقًا أنَّ الاقترانات المثلثية هي قواعد معطاة باستعمال النسب المثلثية. وسأتعلَّم الآن

x حيث $f(x) = \sin x$ الآتى كُلًا من التمثيل البيانى لمنحنى الاقتران:

قياس الزاوية بالراديان، والتمثيل البياني لمنحنى f'(x) الذي رُسِم باستعمال ميل

يظهر من الشكل السابق أنَّ منحنى f'(x) مُطابِق تمامًا لمنحنى جيب التمام؛ ما يعني أنَّ: $f'(x) = \cos x$ منحنى اقتران الجيب حول المحور x.

b) $f(x) = \ln(2x^3)$

مشتقة اقتران الجيب، ومشتقة اقتران جيب التمام

 $f'(x) = \cos x$ إذا كان: $f(x) = \sin x$ ، فإنَّ

مشتقة اقتران الجيب، ومشتقة اقتران جيب التمام

إيجاد مشتقة كلِّ من اقتران الجيب، واقتران جيب التمام.

f(x) المماس لمنحنى

 $f'(x) = -\sin x$ اِذَا كَانَ: $f(x) = \cos x$

مثال 3

أجد مشتقة كل اقتران ممّا يأتي:

نظرية

$$f(x) = 3\sin x + 4$$

$$f(x) = 3\sin x + 4$$

الاقتران المعطى

قواعد مشتقات اقتران الجيب، ومضاعفات الاقتران،

والثابت، والمجموع

 $f'(x) = 3\cos x$

2
$$y = \frac{1}{2}e^x - 7\cos x$$

$$y = \frac{1}{2}e^x - 7\cos x$$

الاقتران المعطى

$$\frac{dy}{dx} = \frac{1}{2}e^x + 7\sin x$$

قواعد مشتقات الاقتران الأُسِّي الطبيعي، ومضاعفات الاقتران، واقتران جيب التمام، والمجموع

🥕 أتحقَّق من فهمي

أجد مشتقة كل اقتران ممّا يأتى:

a)
$$y = \frac{\sin x}{2} + 3\cos x$$

b) $f(x) = x^2 + \cos x + \sin \frac{\pi}{2}$

مثال 4

إذا كان الاقتران: $f(x) = \ln\left(\frac{x}{e}\right)$ ، فأستعمل المشتقة لإيجاد كلِّ ممّا يأتي:

يُمكِن استعمال أيِّ من قواعد الاشتقاق التي تعلَّمْتُها في هذا الدرس لإيجاد معادلة المماس

(1,-1) معادلة المماس عند النقطة (1,-1).

عند نقطة ما على منحنى الاقتران.

الخطوة 1: أجد ميل المماس عند النقطة (1, -1).

تطبيقات: معادلة المماس والعمودي عند نقطة ما

$$f(x) = \ln \left(rac{x}{e}
ight)$$
 الاقتران المعطى $= \ln x - \ln e$ قانون القسمة في اللوغاريتمات

$$=\ln x-1$$
 الخصائص الأساسية في اللوغاريتمات

$$f'(x) = rac{1}{x}$$
 قواعد مشتقات الاقتران اللوغاريتمي الطبيعي، والثابت، والفرق

$$f'(1) = \frac{1}{1} = 1$$
 يتعريض $x = 1$

إذن، ميل المماس هو 1

أتذكّر

اِذَا كَانَ: 1 ≠ م، حيث: 0 > d، فإنَّ: $\log_b b = 1$

الخطوة 2: أجد معادلة المماس.

$$y-y_1=m(x-x_1)$$
 معادلة المستقيم بصيغة العيل ونقطة $y-(-1)=1(x-1)$ $x_1=1,y_1=-1,m=1$ بتعويض $y=x-2$

. y = x - 2 إذن، معادلة المماس هي

معادلة العمودي على المماس عند النقطة (1,-1).

بما أنَّ ميل المماس عند النقطة (1,-1) هو 1، فإنَّ ميل العمودي على المماس هو 1-ومنه، فإنَّ معادلة العمودي على المماس عند النقطة (1,-1) هي: y - (-1) = -1(x - 1)y = -x

أتذكَّر

إذا تعامد مستقيمان، كلُّ منهما ليس رأسيًّا، فإنَّ حاصل ضرب ميليهما هو 1-؛ أيُّ إنَّ ميل أحدهما يساوي سالب مقلوب ميل الأخر.

🥻 أتحقَّق من فهمي

إذا كان الاقتران: $f(x) = \ln \sqrt{x}$ ، فأستعمل المشتقة لإيجاد كلِّ ممّا يأتي:

 $(e, \frac{1}{2})$ معادلة المماس عند النقطة (a

(e, $\frac{1}{2}$) معادلة العمودي على المماس عند النقطة (b

تطبيقات: الحركة في مسار مستقيم

عند دراسة جسم يتحرَّك في مسار مستقيم، أفترض أنَّ الجسم يتحرَّك على خطُّ أعداد انطلاقًا من موقع ابتدائي، وأنَّ اتجاه حركته يكون موجبًا أو سالبًا، وأنَّ موقع (position) هذا الجسم بالنسبة إلى نقطة الأصل يُمثُل اقترانًا بالنسبة إلى الزمن t، ويُرمَز إليه بالرمز s(t).

(velocity) يُطلَق على مُعدَّل تغيُّر اقتران الموقع s(t) بالنسبة إلى الزمن اسم السرعة المتجهة (velocity) للجسم، ويُرمَز إليه بالرمز v(t). وقد سُمِّي بهذا الاسم لأنَّه يُستعمَل لتحديد كلِّ من مقدار سرعة الجسم، واتجاه حركته.

فإذا كانت قيمة v(t)>0، فإنَّ الجسم يتحرَّك في الاتجاه الموجب. وإذا كانت قيمة وإذا كانت قيمة v(t)>0، فإنَّ الجسم يكون v(t)<0 في الاتجاه السالب. وإذا كانت v(t)=0، فإنَّ الجسم يكون في حالة سكون.

يُطلَق على مُعدَّل تغيُّر السرعة المتجهة بالنسبة إلى الزمن اسم النسارع (acceleration)، ويُرمَز إليه بالرمز (a(t). أمَّا القيمة المُطلَقة للسرعة المتجهة فتُسمّى السرعة القياسية (speed)، وهي تُحدَّد مقدارًا، ولا تُحدَّد اتجاه الحركة.

الحركة في مسار مستقيم

مفهوم أساسي

v(t) وقع جسم يتحرَّك في مسار مستقيم، فإنَّ سرعته المتجهة s(t) وقع جسم يتحرَّك في مسار مستقيم، فإنَّ سرعته المتجهة a(t)=v'(t)=s''(t) يعطى بالعلاقة: v(t)=s'(t)=s'(t) وتسارعه a(t)=v'(t)=s''(t) أمَّا سرعته القياسية فهي a(t)=v(t).

أتذكَّر

يأخذ موقع الجسم (s(t) قِيَمًا موجبةً، أو قِيَمًا سالبةً، أو صفرًا.

أتعلَّم

تُسمّى النقطة 0 على خطِّ الأعداد نقطة الأصل.

أتعلَّم

المسافة كمية قياسية (ليست متجهة)، والموقع كمية متجهة.

مثال 5

يُمثِّل الاقتران: $0 \geq t^3, t \geq 6$ $s(t) = 6t^2 - t^3, t \geq 0$ موقع جسم يتحرَّك في مسار مستقيم، حيث s الموقى بالأمتار، وt الزمن بالثواني:

المجد سرعة الجسم وتسارعه عندما t=2

سرعة الجسم:

أجد مشتقة اقتران الموقع، ثمَّ أُعوِّض t=2 في المشتقة:

$$v(t) = s'(t) = 12t - 3t^2$$

$$v(2) = 12(2) - 3(2)^2$$
 $t = 2$

تسارع الجسم:

اقتران السرعة

أجد مشتقة اقتران السرعة، ثمَّ أُعوِّض t=2 في المشتقة:

$$a(t) = v'(t) = s''(t) = 12 - 6t$$
 افتران النسارع $t = 12 - 6(2)$ $t = 0$ بتعویض $t = 0$

 0 m/s^2 سرعة الجسم عندما t=2 هي t=2 الجسم عندما

أجد قِبَم t التي يكون عندها الجسم في حالة سكون لحظي.

u(t) = 0 يكون الجسم في حالة سكون لحظي إذا كانت سرعته 0؛ أيْ عندما

$$12t-3t^2=0$$
 بمساواة اقتران السرعة بالصفر

$$3t(4-t)=0$$
 پاخراج $3t$ عاملًا مشترگا

$$t=0$$
 or $t=4$ $t=0$ $t=0$

ردن، يكون الجسم في حالة سكون لحظي عندما t=4، و t=4.

(3) في أيِّ انجاه يتحرَّك الجسم عندما 5 = 1؟

$$v(t) = 12t - 3t^2$$
 اقتران السرعة $v(5) = 12(5) - 3(5)^2$ $t = 5$ المسرعة $t = 5$ بالتبسيط

بما أنَّ إشارة السرعة سالبة، فإنَّ الجسم يتحرَّك في الاتجاه السالب عندما t=5

4 متى يعود الجسم إلى موقعه الابتدائي؟

يكون الجسم في موقعه الابتدائي أوَّل مَرَّة عندما t=0. ومنه، فإنَّ. s(0)=0.

s(t)=0: الأوقات التي يعود فيها الجسم إلى هذه النقطة، أَحُلُّ المعادلة: s(t)=0

$$6t^2-t^3=0$$
 بمساواة اقتران الموقع بالصفر

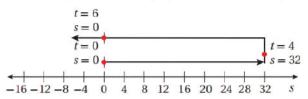
$$t^2(6-t)=0$$
 بإخراج t^2 عاملًا مشتركًا

$$t=0$$
 or $t=6$ $t=1$ معادلة لـ $t=1$

إذن، يعود الجسم إلى موقعه الابتدائي بعد 6 s

الدعم البياني:

يُبيِّن المُخطَّط الآتي اتجاهات حركة الجسم في المسار المستقيم.



أُفكِّر

ما معنى أنْ يكون النسارع في لحظة ما مساويًا للصفر؟

تشير كلمة (السرعة) إلى السرعة المتجهـة أينما

إرشاد

الســرعة المتجهـــة اينما ورد ذكرها في الكتاب.

أتعلَّم

ألاحِظ أنَّ سرعة الجسم سالبة عندما t = 5، وأنَّ موقعه عند اللحظة نفسها موجب (s(5) = (5))؛ ما يعني عدم وجود علاقة بين موقع الجسم واتجاه حركته.

أتذكّر

يدلُّ الرمز (0) على الموقع الابتدائي لجسم يتحرَّك في مسار مستقيم، في حين تدلُّ العبارة s = 0 على أنَّ موقع الجسم هو نقطة الأصل.

🥻 أتحقَّق من فهمي

يُمثِّل الاقتران: $0 \leq t^2 - 7t + 8$ موقع جسم يتحرَّك في مسار مستقيم، حيث $s(t) = t^2 - 7t + 8$ الموقع بالأمتار، وt الزمن بالثواني:

t=4 أجد سرعة الجسم وتسارعه عندما (a

b) أجد قِيَم t التي يكون عندها الجسم في حالة سكون لحظي.

t=2 في أيِّ اتجاه يتحرَّك الجسم عندما t=2

d) متى يعود الجسم إلى موقعه الابتدائي؟

تطبيقات: الحركة التوافقية البسيطة

تعلَّمْتُ سابِقًا أنَّ الاقترانات الجيبية تُستعمَل لنمذجة السلوك الدوري في كثير من المواقف الحياتية والعلمية، مثل حركة اهتزاز كتلة مُعلَّقة بزنبرك؛ إذ يُمكِن إيجاد سرعة هذه الكتلة وتسارعها باستعمال المشتقات.

أتذكّر

إذا كانست المعادلة التي تَصِف الإزاحة y لجسم عند الزمن 1 هي: $y = a \sin \omega t$ فإنْ $y = a \cos \omega t$ الجسم يكون في حركة توافقية بسيطة.

🥑 مثال 6 : من الحياة

موقع الاتزان موقع الكتلة عندما t = 0

زنبرك: يُبيِّن الشكل المجاور جسمًا مُعلَّقًا بزنبرك، شُــدٌ 5 وحدات أسفل موقع الاتزان (s=0)، ثمَّ تُرك عند الزمن t = 0 ليتحرَّك إلى الأعلى وإلى الأسفل. ويُمثِّل الاقتران: $s(t) = 5\cos t$ موقع الجسم عند أيِّ زمن الحق، حيث t الزمن بالثواني، و الموقع بالسنتيمترات:

أجداقترانًا يُمثِّل سرعة الجسم، واقترانًا آخرَ يُمثِّل تسارعه عند أيِّ لحظة.

$$v(t) = s'(t) = -5\sin t$$

اقتران السرعة

$$a(t) = v'(t) = -5\cos t$$

اقتران التسارع

أصف حركة الجسم.

11

- اعتمادًا على الخصائص الجبرية لاقتران الموقع، فإنَّ الجسم يتحرَّك بمرور الزمن بين الموقع s = 5 والموقع s = -5 على المحور s، والقيمة السالبة تعني أنَّ الجسم فوق موقع الاتزان.
- ألاحِظ أنَّ قيمة السرعة القياسية تكون أكبر ما يُمكِن في كلِّ من الاتجاه الموجب والاتجاه السالب عندما $|\sin t| = 1$. وفي هذه الحالة، فإنَّ $\cos t = 0$ (متطابقة فيثاغورس). وبالرجوع إلى اقتران الموقع، أُلاحِظ أنَّ قيمته تُصبِح صفرًا (موقع الاتزان) عندما cos t = 0؛ ما يعني أنَّ سرعة الجسم القياسية تكون أكبر ما يُمكِن عندما يمرُّ الجسم بموقع الاتزان.
- · اعتمادًا على الخصائص الجبرية لاقتران التسارع، فإنَّ قيمة تسارع الجسم تكون دائمًا معكوس قيمة موقع الجسم؛ ذلك أنَّ مُحصِّلة القوى تسحب الجسم إلى الأسفل إذا كان أعلى موقع الاتزان، وأنَّ مُحصِّلة القوى تسحب الجسم إلى الأعلى إذا كان أسفل موقع الاتزان.
- تكون قيمة التسارع صفرًا فقط عند موقع الاتزان؛ لأنَّ قوَّة الجاذبية وقوَّة الزنبوك تُلغي إحداهما الأُخرى عندهذه النقطة. ولكنَّ، إذا كان الجسم عندأيٌّ موقع آخر، فإنَّ هاتين القوَّتين لا تكونان متساويتين، والتسارع لا يساوي صفرًا.

أجد مشتقة كل اقتران ممّا يأتي:

$$(2) f(x) = \frac{\ln x}{4} - \pi \cos x$$

$$f(x) = e^x + x^e$$

$$f(x) = \ln\left(\frac{10}{x^n}\right)$$

$v = -5\sin t \qquad s = 5\cos t$ $\frac{\pi}{2} \qquad \pi \qquad \frac{8\pi}{2} \qquad \frac{5\pi}{2} \qquad t$

الدعم البياني:

ألاحِظ من التمثيل البياني المجاور لاقتراني الموقع والسرعة أنَّ موقع الجسم يتراوح بين القيمة $s=5~{
m cm/s}$ وأنَّ سرعته تتراوح بين القيمة $v=5~{
m cm/s}$ والقيمة $v=5~{
m cm/s}$ والقيمة $v=-5~{
m cm/s}$

أُلاحِظ أيضًا أنَّ السرعة القياسية تكون أكبر ما

يُمكِن عندما يقطع منحنى اقتران الموقع المحور x (موقع الاتزان).

أَتَذَكَّر - الربط بالفيزياء - الربط بالفيزياء

المحقّ المحسّم في كل المحسّم في كل المحسّم في كل المحقّمة في المُحصّلة مرتبط بمُحصّلة $\cos^2 x + \sin^2 x = 1$ القانون الثاني لنوتن: $\sum F = ma$ عيث

a تسارع الجسم، وm

كتلت، وF∑ مُحصًلة القوى المُؤثِّرة فيه.

إذا كانــت المعادلة التي أتذكّر و كانــت المعادلة التي تصف الإزاحة y لجـــم عند الزمن t هي: متطابقة فيثاغورس: $s^2x + \sin^2 x = 1$ و . أو: $y = a \cos \omega t$ الجـــم يكون في حركة الجـــم يكون في حركة توافقية بسيطة.

🥻 أَتحقَّق من فهمي

يتحرَّك جسم مُعلَّق بزنبرك إلى الأعلى وإلى الأسفل، ويُمثِّل الاقتران: $s(t) = 7 \sin t$ الزمن بالثواني. $s(t) = 8 \cot t$ الموقع بالأمتار:

a) أجد اقترانًا يُمثّل سرعة الجسم، واقترانًا آخرَ يُمثّل تسارعه عند أيّ لحظة.

b) أُصِف حركة الجسم.

10 اختيار من مُتعلّد:

أيُّ الآتية تُمثِّل معادلة العمودي على المماس لمنحنى الاقتران:

 $f(x) = \pi$ عندما $f(x) = \sin x + \cos x$

a)
$$y = -x + \pi - 1$$

b)
$$y = x - \pi - 1$$

c)
$$y = x - \pi + 1$$

d)
$$y = x + \pi + 1$$

$$f'(x)=rac{1}{x}$$
 إذا كان: $f(x)=\ln{(kx)}$ ، حيث $f(x)=\ln{(kx)}$ عدد حقيقي موجب، و $f(x)=\ln{(kx)}$

إذا كان الاقتران: $f(x) = \ln x$ ، فأُجيب عن السؤالين الآتيين تباعًا:

(e, 1) أُثبِت أنَّ مماس منحني الاقتران عند النقطة (e, 1) يمرُّ بنقطة الأصل.

$$e + \frac{1}{e}$$
 هو $(e, 1)$ هو أُثِبِت أنَّ المقطع x للعمودي على المماس لمنحنى الاقتران عند النقطة.

إذا كان: $f(x) = \sin x + \frac{1}{2}e^x$ إذا كان:

 $(\pi, \frac{1}{2} \, e^\pi)$ أجد معادلة المماس لمنحنى الاقتر ان f عند النقطة المماس لمنحنى الاقتر ان أجد معادلة المماس لمنحنى

 $(\pi, \frac{1}{2} \, e^\pi)$ أجد معادلة العمو دي على المماس لمنحنى الاقتران f عند النقطة (

 $f(x)=e^x-2x$: أجد قيمة x التي يكون عندها المماس أفقيًّا لمنحنى الاقتران x

يُمثِّل الاقتران: $s(t)=e^t-4t, t\geq 0$ موقع جُسَيْم يتحرَّك في مسار مستقيم، حيث s الموقع با لأمتار، وt الزمن بالثواني:

أُحدِّد الموقع الابتدائي للجُسَيْم.

19 أجد تسارع الجُسَيْم عندما تكون سرعته صفرًا.

- يُمثَّل الاقتران: $\mathbf{s}(t) = t^3 4t^2 + 5t, t \geq 0$ موقع جسم ينحرَّك في مسار مستقيم، حيث $\mathbf{s}(t)$ الموقع بالأمتار، و \mathbf{t} الزمن بالثواني:
 - t=5 أجد سرعة الجسم وتسارعه عندما أ

أجد قِيم t التي يكون عندها الجسم في حالة سكون لحظي.

16 في أيِّ اتجاه يتحرَّك الجسم عندما 4 = 1؟

🕡 متى يعود الجسم إلى موقعه الابتدائي؟

زنبرك: يتحرَّك جسم مُعلَّق بزنبرك إلى الأعلى وإلى الأسفل، ويُمثِّل الاقتران: موقع الجسم عند أيِّ زمن الاحق، حيث t الزمن بالثواني، $s(t)=4\cos t$ و الموقع بالأمتار:

أجد اقترانًا يُمثّل سرعة الجسم، واقترانًا آخر يُمثّل تسارعه عند أيّ لحظة.

 $t = \frac{\pi}{4}$ أجد سرعة الجسم وتسارعه عندما

22 أَصِف حركة الجسم.

، تبرير: إذا كان الاقتران: $y=e^x-ax$ عدد حقيقي a

فأجد معادلة المماس عند نقطة تقاطع الاقتران مع المحور ٧، ثمَّ أُبرِّر إجابتي.

 $y = 2e^x + 3x + 5x^3$: تحدًّ أثبت عدم وجود مماس ميله 2 للاقتران وجود مماس ميله 2 الم

تحدًّ: إذا كان الاقتران: $y = \log x$ ، فأُجيب عن السؤالين الآتيين تباعًا:

$$\frac{dy}{dx} = \frac{1}{x \ln 10}$$
 : أُثبت أنَّ 27

إذا كان العمو دي على المماس عند النقطة P يقطع المحور x عند النقطة (100,0) فأجد قيمة (100,0)

تبريس: إذا كان الاقتسران: $y = ke^x$ ، وكان منحناه

يقطع المحور y عند النقطة P، فأُجيب عن السؤالين الآتين تباعًا:

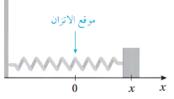
x أجد نقطة تقاطع مماس منحنى الاقتران عند النقطة P مع المحور x

اعتمادًا على النتيجة من السؤال السابق، أجد $\frac{dy}{dx}$ للاقتران: $y = \log ax^2$

تبريس: يُمثِّل الاقتىران: $s(t) = 4 - \sin t, \ t \geq 0$ موقع جُسَيْم يتحرَّك في مسار مستقيم، حيث s الموقع بالأمتار، و t الزمن بالثواني:

أجد سرعة الجُسَيْم وتسارعه بعد t ثانية.

مسألة اليوم يهتزُّ جسم مُثبَّت في زنبرك أفقيًّا على سطح أملس كما $x(t) = 8 \sin t : 0$ في الشكل المجاور. ويُمثِّل الاقتران: t موقع الجسم، حيث t الزمن بالثواني، وt الموقع بالسنتيمترات:



 $t = \frac{2}{3} \pi$ أجد موقع الجسم وسرعته وتسارعه عندما (1

 أجد موقع الجُسَيْم عندما كان في حالة سكون لحظي أوَّل مَرَّة بعد انطلاقه.

(31) أجد موقع الجُسَيْم عندما يكون تسارعه صفرًا، ثمَّ أُبرِّر إجابتي.

 $t = \frac{2}{3} \pi$ في أيِّ اتجاه يتحرَّك الجسم عندما (2

السئلة كتاب التهارين

أجد مشتقة كل اقتران ممّا يأتي:

$$f(x) = 9e^x + \frac{1}{3\sqrt{x}}$$

2 $f(x) = 2e^x + \frac{1}{x^2}$

 $3 f(x) = \frac{\pi}{2} \sin x - \cos x$

x=2 أجد معادلة المماس لمنحنى الاقتران: $f(x)=2e^x+x$ عندما أجد معادلة المماس لمنحنى

 $(x) = 3x + \sin x + 2$: أُثبِت عدم وجود مماس أفقي لمنحنى الاقتران

- يُمثِّل الاقتران: $s(t) = 3t^2 t^3$, $t \ge 0$ موقع جُسَيْم يتحرَّك في مسار مستقيم، حيث s الموقع بالأمتار، وt الزمن بالثوانى:
 - 6 أجد سرعة الجُسَيْم وتسارعه بعد t ثانية.

أجد الموقع (المواقع) الذي يكون عنده الجُسَيْم في حالة سكون لحظي.

إذا كان: $f(x) = \ln x^2$ ، فأُجيب عن السؤالين الآتيين تباعًا:

- $x=e^2$ أجد معادلة مماس منحنى الاقتران عندما أ
- إذا كان: $f(x) = 2 \sin x 4 \cos x$ ، فأُجيب عن السؤالين الآتيين تباعًا:
- x=0 أجد ميل المماس لمنحنى الاقتران f(x) عندما $\mathbf{0}$

- $x = \frac{\pi}{2}$ أجد معادلة المماس لمنحنى الاقتران f(x) عندما المنحنى المنحنى الاقتران أجد معادلة المماس لمنحنى الاقتران أ
- أجد الإحداثي x للنقطة التي يكون عندها المماس موازيًا للمستقيم: 6x 2y + 5 = 0

مشتقتا الضرب والقسمة والمشتقات العليا

الدرس الثاني

Product and Quotient Rules and Higher-Order **Derivatives**

أجد مشتقة كل اقتران ممّا يأتي:

$$f(x) = (3x - 2x^2)(5 + 4x)$$

الاقتران المعطى

$$f'(x)=(3x-2x^2) \; rac{d}{dx} \, (5+4x) + (5+4x) \; rac{d}{dx} \, (3x-2x^2)$$
 قاعدة مشتقة الضرب

$$= (3x - 2x^2)(4) + (5 + 4x)(3 - 4x)$$

قاعدتا مشتقة اقتران القوَّة، ومشتقة الطرح

$$= (12x - 8x^2) + (15 - 8x - 16x^2)$$

باستعمال خاصية التوزيع

$$= -24x^2 + 4x + 15$$

بالتبسيط

يُمكِننسي حلُّ الفرع 1 من المثال 1 باستعمال خاصية التوزيع أوَّلًا، ثمَّ اشستقاق الاقتران النانج باستعمال قاعدة مشتقة المجموع،

$2 f(x) = xe^x$

 $f(x) = xe^x$

الاقتران المعطى

$$f'(x) = x \frac{d}{dx} (e^x) + e^x \frac{d}{dx} (x)$$

قاعدة مشتقة الضرب

$$= xe^x + e^x \times 1$$

قاعدتا مشتقة اقتران القوَّة، ومشتقة الاقتران الأُسِّي الطبيعي

$$= xe^x + e^x$$

بالتبسيط

أخطاء شائعة

من الأخطاء الشائعة عند إيجاد مشتقة حاصل ضرب اقترانین، ضرب مشتقة الافتران الأوَّل في مشتقة الاقتران الثاني.

مشتقة ضرب اقترانين

تعلَّمْتُ سابقًا إيجاد مشــتقات اقترانات مختلفة، مثل: اقترانات القوَّة، والاقتران الأُسِّــي الطبيعسي، والاقتران اللوغاريتمي الطبيعي، واقتران الجيب، واقتران جيب التمام. تعلَّمْتُ أيضًا إيجاد مشـــتقات مضاعفات هذه الاقترانات والاقترانات الناتجة من جمعها و وطرحها. ولكنْ، كيف يُمكِن إيجاد مشــتقات الاقترانــات الناتجة من ضرب هذه

f(x)g(x) اقترانات؟ فمثلًا، إذا كان f(x) و g(x) اقترانين، فكيف يُمكِن إيجاد مشتقة

لنفتر ض أنَّ: f(x)=u, g(x)=v, y=f(x)g(x)=uv لنفتر ض أنَّ: المنتور ض أنَّ في x، ينتج منها تغيُّر في y,u,v، مقداره $\Delta y,\Delta u,\Delta v$ على الترتيب. ومنه، فإنَّ:

 $f(x + \Delta x) = u + \Delta u, g(x + \Delta x) = v + \Delta v, f(x + \Delta x)g(x + \Delta x) = y + \Delta y$

إذن:

$$y+\Delta y=(u+\Delta u)(v+\Delta v)$$
 بالتعويض من طرفي المعادلة $\Delta y=(u+\Delta u)(v+\Delta v)-y$ بعويض $y=(u+\Delta u)(v+\Delta v)-uv$ باستعمال خاصية التوزيع باستعمال خاصية التوزيع

 $= u\Delta v + v\Delta u + \Delta u \, \Delta v$ بالتبسيط

 $\frac{\Delta y}{\Delta x} = u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x} + \Delta u \frac{\Delta v}{\Delta x}$ بقسمة جميع أطراف المعادلة على Δx

 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = u \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} + v \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \lim_{\Delta x \to 0} \Delta u \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x}$ ميل المماس عند النقطة (x, y)

 $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} + (\lim_{\Delta x \to 0} \Delta u) \frac{dv}{dx}$ باستعمال تعريف المشتقة

 $=u\frac{dv}{dx}+v\frac{du}{dx}+(0)\frac{dv}{dx}$ $\lim_{\Delta x \to 0} \Delta u = 0$

 $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

(fg)'(x) = f(x) g'(x) + g(x) f'(x)بالتعويض

(fg)'(x) = f(x)g'(x) + g(x)f'(x) إذن:

مشتقة ضرب اقترانين هي الاقتران الأوَّل مضروبًا في مشتقة الاقتران الثاني، ثمَّ يضاف إليه الاقتران الثاني مضروبًا في مشتقة الاقتران الأوَّل.

إذا كان f(x) و g(x) اقترانيس، فإنَّه يُمكِن إيجاد مشتقة g(x) على بالرموز:

(fg)'(x) = f(x)g'(x) + g(x)f'(x)

$$=\frac{\frac{du}{dx}-\frac{u}{v}\times\frac{dv}{dx}}{v}$$

$$y = \frac{u}{v}$$
 بتعویض

$$=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$$

$$\left(\frac{f}{g}\right)'(x) = -\frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

$$\left(\frac{f}{g}\right)'(x) = \frac{g(x) \times f'(x) - f(x) \times g'(x)}{\left(g(x)\right)^2}$$
 إذن:

مشتقة القسمة

نظرية

الكلمات: مشتقة قسمة اقترانين هي المقام في مشتقة البسط مطروحًا منه البسط في مشتقة المقام، ثمَّ قسمة الجميع على مُربَّع المقام.

بالرموز: إذا كان g(x) و g(x) اقترانيس، وكان $g(x) \neq g(x)$ ، فإنَّه يُمكِن إيجاد مشتقة $\frac{f(x)}{g(x)}$ على النحو الآتي:

$$\left(\frac{f}{g}\right)'(x) = \frac{g(x) \times f'(x) - f(x) \times g'(x)}{\left(g(x)\right)^2}$$

مثال 2

أجد مشتقة كل اقتران ممّا يأتي:

1
$$f(x) = \frac{1-x^2}{1+x^2}$$

$$f(x) = \frac{1-x^2}{1+x^2}$$

الاقتران المعطى

$$f'(x) = \frac{(1+x^2)\frac{d}{dx}(1-x^2) - (1-x^2)\frac{d}{dx}(1+x^2)}{(1+x^2)^2}$$

قاعدة مشتقة القسمة

$$=\frac{(1+x^2)(-2x)-(1-x^2)(2x)}{(1+x^2)^2}$$

قواعد مشتقات اقتران القوَّة، والطرح، والجمع

$$=\frac{-2x-2x^3-2x+2x^3}{(1+x^2)^2}$$

باستعمال خاصية التوزيع

$$=\frac{-4x}{(1+x^2)^2}$$

بالتبسيط

🍂 أتحقَّق من فهمي

أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = (x^3 - 2x^2 + 3)(7x^2 - 4x)$$

b) $f(x) = \ln x \cos x$

مشتقة قسمة اقترانين

مشتقة قسمة اقترانين ليست حاصل قسمة مشتقة كلِّ منهما، مثلما أنَّ مشتقة ضرب اقترانين ليست حاصل ضرب مشتقة كلِّ منهما. فمثلًا، إذا كان g(x) g(x) اقترانين، فكيف يُمكِن ليست حاصل ضرب مشتقة $\frac{f(x)}{g(x)}$ ؟

u لنفتر ض أنَّ: u = vy . ومنه، فإنَّ f(x) = u, g(x) = v, $y = \frac{f(x)}{g(x)} = \frac{u}{v}$. وبما أنَّ الاقتران u هو حاصل ضرب اقترانين، فإنَّه يُمكِن إيجاد مشتقته باستعمال قاعدة مشتقة الضرب على النحو الآتي:

$$\frac{du}{dx} = v \frac{dy}{dx} + y \frac{dv}{dx}$$

ومن ثَمَّ، فإنَّه يُمكِن إيجاد $\frac{dy}{dx}$ كما يأتي:

بإعادة ترتيب المعادلة

 $\frac{dy}{dx} = \frac{\frac{du}{dx} - y \frac{dv}{dx}}{v}$

21

 $v \frac{dy}{dx} = \frac{du}{dx} - y \frac{dv}{dx}$

 ν بقسمة طرفي المعادلة على

$$2 f(x) = \frac{\ln x}{x+1}$$

$$f(x) = \frac{\ln x}{x+1}$$

الاقتران المعطى

$$f'(x) = \frac{(x+1)\frac{d}{dx}(\ln x) - (\ln x)\frac{d}{dx}(x+1)}{(x+1)^2}$$

$$=rac{(x+1)\left(rac{1}{x}
ight)-(\ln x)(1)}{\left(x+1
ight)^2}$$
 والاقتران اللوغاريت ي الطبيعي الطبيعي

$$=\frac{1+\frac{1}{x}-\ln x}{\left(x+1\right)^{2}}$$

 $\left(x+1\right)^{2}$

$$x(x+1)$$

🎢 أتحقَّق من فهمى

بالتبسيط

أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = \frac{x+1}{2x+1}$$

b)
$$f(x) = \frac{\sin x}{e^x}$$

تعلَّمْتُ سابقًا أنَّ المشتقة هي مُعدَّل تغيُّر كمية بالنسبة إلى كمية أُخرى عند لحظة مُعيَّنة. فمثلًا، إيجاد
$$\frac{dy}{dx}$$
 يعني إيجاد مُعدَّل تغيُّر y بالنسبة إلى x .

تتغيَّر القِيَم في كثير من المواقف الحياتية بالنسبة إلى الزمن. فمثلًا، إذا كان r كمية مُعيَّنة؛ فإنَّ مُعدَّل تغيُّرها بالنسبة إلى $\frac{dr}{dt}$ الزمن t هو

مرض تعطى درجة حرارة مريض أثناء مرضه بالاقتران: بعد $T(t) = \frac{4t}{1+t^2} + 98.6$ ظهور أعراض المرض، و T درجة الحرارة بالفهرنهايت:

أجد مُعدَّل تغيُّر درجة حرارة المريض بالنسبة إلى الزمن.

T'(t) أجد

$$T(t) = \frac{4t}{1+t^2} + 98.6$$
 الاقتران المعطى

$$T'(t) = rac{(1+t^2)rac{d}{dt}(4t) - (4t)rac{d}{dt}(1+t^2)}{(1+t^2)^2}$$
 مشتقة الثابت ومشتقة الثابت

$$=rac{(1+t^2)(4)-(4t)(2t)}{(1+t^2)^2}$$
 المقرّة، المجموع الم

$$= \frac{4 + 4t^2 - 8t^2}{(1 + t^2)^2}$$

$$= \frac{4 - 4t^2}{(1 + t^2)^2}$$

$$= \frac{4 - 4t^2}{(1 + t^2)^2}$$

إذن، مُعدَّل تغيُّر درجة حرارة المريض بالنسبة إلى الزمن هو:

$$.T'(t) = \frac{4 - 4t^2}{(1 + t^2)^2}$$

الوحدة الثالثة / التفاضل وتطبيقاته

أجد مُعدَّل تغيُّر درجة حرارة المريض عندما t=1، ثمَّ أُفسِّر معنى الناتج.

 $T'(t) = \frac{4 - 4t^2}{(1 + t^2)^2}$

 $T'(2) = \frac{4 - 4(2)^2}{(1 + (2)^2)^2}$

= -0.48

رياضيات متقدم

مشتقة المقلوب

يُمكِن إيجاد قاعدة عامة لمشتقة مقلوب أيِّ اقتران باستعمال قاعدة القسمة. فمثلًا، إذا كان f(x) اقترانًا، حيث:

$$\dot{\tilde{\omega}}$$
 فإ $\dot{\tilde{\omega}}$ ، وكان $f(x)=rac{1}{f(x)}$ فإ $\dot{\tilde{\omega}}$

$$A'(x) = \frac{f(x) \times 0 - 1 \times f'(x)}{(f(x))^2}$$
قاعدة مشتقة القسمة

$$=\frac{-f'(x)}{(f(x))^2}$$

$$A'(x) = \frac{-f'(x)}{(f(x))^2}$$
: إذن

🥒 أتحقَّق من فهمي

:T'(2) أجد

T(t) مشتقة

t=2 بتعويض

بالتبسيط

درجة فهرنهايتية لكل ساعة.

سكّان يعطى عدد سكّان مدينة صغيرة بالاقتران: $P(t) = \frac{500t^2}{2t+9}$. حيث t الزمن بالسنوات، وP عدد السكّان بالآلاف:

إذن، عندما يكون الزمن h 2، فإنَّ درجة حرارة المريض تقل بمقدار 0.48

a) أجد مُعدَّل تغيُّر عدد السكّان في المدينة بالنسبة إلى الزمن.

ن أجد ٍ مُعدَّل تغيُّر عدد السكّان في المدينة عندما t=12،

غل بية

بالكلمات: مشتقة مقلوب اقتران هي سالب مشتقة الاقتران مقسومًا على مُربَّع الاقتران.

 $\frac{1}{f(x)}$ افترانًا، حيث: $0 \neq f(x)$ ، فإنَّه يُمكِن إيجاد مشتقة على النحو الآتي:

$$\left(\frac{1}{f}\right)'(x) = \frac{-f'(x)}{(f(x))^2}$$

أتعلَّم

مشتقة المقلوب

اذا کان c مسددًا ثانیاً، و کان f(x) کان f(x)

مثال 4

أجد مشتقة كل اقتران ممّا يأتي:

$$f(x) = \frac{1}{1+x^2}$$

$$f(x) = \frac{1}{1+x^2}$$

قاعدة مشتقة المقلوب

$$f'(x) = \frac{-\frac{d}{dx}(1+x^2)}{(1+x^2)^2}$$

$$=\frac{-2x}{(1+x^2)^2}$$
 Electric electric

، ثمَّ أُفسِّر معنى الناتج.

مشتقات الاقترانات المثلثية

تعلَّمْتُ في الدرس السابق كيفية إيجاد مشتقة اقتران الجيب ومشتقة اقتران جيب التمام.

وسأتعلَّم الآن كيف أجد مشتقات الاقترانات المثلثية باستعمال، مشتقة القسمة. فمثلًا، لإيجاد مشتقة اقتران الظلِّ، أفترض أنَّ $f(x) = \tan x$

$$f(x) = \tan x = \frac{\sin x}{\cos x}$$

المتطابقات النسبية

$$f'(x) = \frac{(\cos x) \frac{d}{dx} (\sin x) - (\sin x) \frac{d}{dx} (\cos x)}{(\cos x)^2}$$
قاعدة مشتقة القسمة

$$=\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{(\cos x)^2}$$

$$(\cos x)^2$$

$$(\cos x)^2$$

$$=\frac{\cos^2 x + \sin^2 x}{(\cos x)^2}$$

$$=\frac{1}{\cos^2 x}$$
متطابقات فیثاغورس

$$= \sec^2 x$$
 متطابقات المقلوب

$$2 f(t) = \frac{1}{t + \frac{1}{t}}$$

$$f(t) = \frac{1}{t + \frac{1}{t}}$$

الاقتران المعطى

$$f'(t) = rac{-rac{d}{dt}(t+rac{1}{t})}{(t+rac{1}{t})^2}$$
 قاعدة مشتقة المقلوب

$$=rac{-1+rac{1}{t^2}}{\left(t+rac{1}{t}
ight)^2}$$
 قاعدتا مشتقة اقتران القوَّة، ومشتقة المقلوب

$$=\frac{1-t^2}{t^2(t+\frac{1}{t})^2}$$

🥒 أتحقَّق من فهمي

أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = \frac{1}{5x - x^2}$$

b)
$$f(x) = \frac{1}{e^x + \sqrt{x}}$$

مشتقات الاقترانات المثلثية

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

ائيات الحالات الثلاث المُتفَّية من النظامة جاء يصين و تك بين في المسائل (22–20).

႔ أتحقَّق من فهمي

أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = x \cot x$$

$$f(x) = \frac{\tan x}{1 + \sin x}$$

مثال 5

أجد مشتقة كل اقتران ممّا يأتي:

$$f(x) = x^2 \sec x$$

$$f(x) = x^2 \sec x$$
 الاقتران المعطى $f'(x) = x^2 \frac{d}{dx} (\sec x) + \sec x \frac{d}{dx} (x^2)$ قاعدة مشتقة اقتران القاطع، قاعدتا مشتقة اقتران القاطع، ومشتقة اقتران القوّة

أتذكّر

القاطع (sec x) هـو مقلوب جيب التمام، وقاطع التمام (csc x) هو مقلوب الجيب.

$$f(x) = \frac{\csc x}{1 + \tan x}$$

الاقتران المعطى

$$f(x) = \frac{\csc x}{1 + \tan x}$$

اعدة مشتقة القسمة

$$f'(x) = \frac{(1+\tan x)\frac{d}{dx}(\csc x) - (\csc x)\frac{d}{dx}(1+\tan x)}{(1+\tan x)^2}$$
The second representation of th

$$=\frac{(1+\tan x)\left(-\csc x\cot x\right)-(\csc x)\left(\sec^2 x\right)}{(1+\tan x)^2}$$
 الظلّ، والمجموع، وقاطع التمام

$$=\frac{-\csc x \cot x - \csc x \cot x \tan x - \csc x \sec^2 x}{(1 + \tan x)^2}$$
 التوزيع

$$= \frac{-\csc x \cot x - \csc x - \csc x \sec^2 x}{(1 + \tan x)^2}$$

🧥 أتحقَّق من فهمي

 $f(x) = x \sin x$ أجد المشتقات الثلاث الأولى للاقتران

المشتقات العليا

تعلَّمْتُ سابقًا أَنَّه إذا كان f(x) اقترانًا، فإنَّ المشتقة f'(x) هي اقتران أيضًا، ومن المُمكِن إيجاد مشتقته، التي يُرمَز إليها بالرمز f''(x). وفي هذه الحالة، يُطلَق على الاقتران الجديد f''(x) اسم المشتقة الثانية للاقتران f(x).

إذا كان f''(x) اقترانًا، فإنَّه يُرمَز إلى مشتقته بالرمز f''(x)، وتُسمّى المشتقة الثالثة للاقتران f(x). ويستمر إيجاد المشتقات وتسمياتها على النحو نفسه، ويُستعمَل الرمز $f^{(n)}(x)$ للدلالة على المشتقة $f^{(n)}(x)$

رموز رياضية

تُستعمَل الرموز:

$$\frac{d^2y}{dx^2}, y'', \frac{d^2}{dx^2}(f(x))$$

للتعبير عن المشتقة

الثانية، وتُستعمَل الرموز:

$$\frac{d^n y}{dx^n}, y^{(n)}, \frac{d^n}{dx^n} (f(x))$$

للتعبير عن المشتقة (n).

مثال 6

 $f(x) = x^2 - \frac{1}{x}$ أجد المشتقات الأربع الأولى للاقتران:

$$f'(x) = 2x + \frac{1}{x^2}$$

$$f''(x) = 2 - \frac{2}{x^3}$$

$$f^{\prime\prime\prime}(x) = \frac{6}{x^4}$$

$$f^{(4)}(x) = -\frac{24}{x^5}$$

أتعلَّم

يشير الرمنز (n) إلى المشتقة (n) للاقتران أو، في حين يشير الرمز "أو إلى الاقتران أومرفوعًا إلى القرّة n.

26

 $f(x) = \frac{\sin x + \cos x}{e^x}$

أجد مشتقة كل اقتران ممّا يأتي:

$$f(x) = \frac{x^3}{2x - 1}$$

$$(2) f(x) = x^3 \sec x$$

$$3 f(x) = \frac{x+1}{\cos x}$$

$$f(x) = x^3 \sin x + x^2 \cos x$$

10
$$f(x) = (x^3 - x)(x^2 + 2)(x^2 + x + 1)$$

$$f(x) = \sqrt[3]{x} (\sqrt{x} + 3)$$

$$f(x) = (\csc x + \cot x)^{-1}$$

$$f(x) = \frac{2 - \frac{1}{x}}{2}$$

أجد المشتقة الثانية لكل اقتران ممّا يأتي عند قيمة x المعطاة:

15
$$f(x) = \frac{x^2 - 4}{x^2 + 4}, x = -2$$

$$g(0)=-1,$$
 $g'(0)=2$ إذا كان $g(x)$ وقترانين، وكان $g(x)$ اقترانين، $f(0)=5$ فأجد كُلَّا ممّا يأتي:

$$(\frac{f}{g})'(0)$$

16
$$f(x) = \frac{1+x}{1+\sqrt[3]{x}}, x = 8$$

$$(7f - 2fg)'(0)$$

أجد معادلة المماس لكل اقتران ممّا يأتي عند النقطة المعطاة:

18
$$f(x) = \frac{1+x}{1+e^x}, (0, \frac{1}{2})$$

17
$$f(x) = \frac{1-x}{1+\sqrt{x}}, x = 4$$

19
$$f(x) = e^x \cos x + \sin x$$
, (0, 1)

أُلاحِظ المشتقة المعطاة في كلِّ ممّا يأتي، ثمَّ أجد المشتقة العليا المطلوبة:

23
$$f''(x) = 2 - \frac{2}{x}, f'''(x)$$

24
$$f'''(x) = 2\sqrt{x}, f^{(4)}(x)$$

25
$$f^{(4)}(x) = 2x+1, f^{(6)}(x)$$

$$: \frac{d}{dx}(\cos x) = -\sin x \cdot \frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

وه نباتـــات هجينة: وجد فريق بحث زراعي أنَّه يُمكِـــر التعبير عن ارتفاع نبتة مُهجَّنة من

نبات تبّاع الشمس h بالأمتار باستعمال الاقتران:

بعد زراعة $h(t) = \frac{3t^2}{4+t^2}$ الزمن بالأشهر بعد زراعة البذور. أجد مُعدَّل تغيُّر ارتفاع النبتة بالنسبة إلى الزمن.

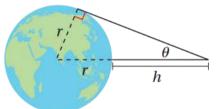
إذا كان الاقتران: y = e^x sin x. فأُجيب عن السؤالين الآتيين تباعًا:

$$\frac{d^2y}{dx^2}$$
 و $\frac{dy}{dx}$ أجد

الحل:

$$2\frac{dy}{dx} - 2y = 2e^{x}(\cos x + \sin x) - 2e^{x}\sin x$$
$$= 2e^{x}\cos x$$
$$= \frac{d^{2}y}{dx^{2}}$$

أقمار صناعية: عندما ترصد الأقمارُ الصناعيةُ الأرضَ، فإنّه يُمكِنها مسـح جزء فقط من سـطح الأرض. وبعض الأقمار الصناعية تحوي مُستشعِرات لقياس الزاوية θ (بالراديان) المُبيّنة في الشكل المجاور. إذا كان h يُمثّل المسافة بين القمر الصناعي وسطح الأرض بالكيلومتر، و r يُمثّل نصف قُطْر الأرض بالكيلومتر، فأُجيب عن السؤالين الآتيين تناعًا:



 $.h = r(\csc \theta - 1)$: أُثِبِت أَنَّ 29

 $\theta = \frac{\pi}{6}$ rad أجد مُعدَّل تغيُّر h بالنسبة إلى θ عندما (أفتر ض أنَّ $r = 6371~{
m km}$).

 $f'(x) = \frac{(3x-1)(3x+1)}{x^3}$

: إذا كان $f(x) = 9 \ln x + \frac{1}{2x^2}$ فأثبِت أنَّ

$$Q'(7) = \frac{G(7)F'(7) - F(7)G'(7)}{G^{2}(7)}$$
$$= \frac{1 \times \frac{1}{4} - 5 \times -\frac{2}{3}}{1} = \frac{43}{12}$$

🗞 مهارات التفكير العليا

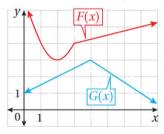
تبرير: $y = \frac{1 - e^{-x}}{1 + e^{-x}}$ إذا كان: $y = \frac{1 - e^{-x}}{1 + e^{-x}}$

آجد ميل المماس عند نقطة الأصل.

G(x)، وF(x) ، و F(x) ، يُبيِّن الشكل المجاور منحنيي الاقترانين:

$$Q(x) = \frac{F(x)}{G(x)}$$
 : وكان $P(x) = F(x)G(x)$ إذا كان

فأجد كُلًّا ممّا يأتي:



32 P'(2)

أبيِّن عدم وجود مماس أفقي للاقتران ٧، ثمَّ أُبرِّر إجابتي.

.
$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$
 أُبيِّن أنَّ 38

تحدًّ: إذا كان:
$$y = \frac{x+1}{x-1}$$
، حيث: $1 \neq x$ ، فأُجيب عن الأسئلة الثلاثة الآتية تباعًا:

$$\frac{dy}{dx}$$
 أجد

تبرير إذا كان: $\frac{\ln x}{x^2}$ ، فأُجيب عن السؤالين الآتيين تباعًا:

. ثَبِّ أُنْرِ إجابتي
$$f''(x) = \frac{6 \ln x - 5}{x^4}$$
 أُبِرِّ إجابتي أَنْرِ إجابتي.

x أُعيد كتابة المعادلة بالنسبة إلى المُتغيِّر $\frac{dx}{dy}$. ثمَّ أجد $\frac{dx}{dy}$. ثمَّ أجد $\frac{dx}{dy}$.

السئلة كتاب التهارين

40 أجد قيمة المقدار:

أجد مشتقة كل اقتران ممّا يأتي:

$$f(x) = -\csc x - \sin x$$

$$f(x) = \frac{x+c}{x+\frac{c}{x}}$$

مسألة اليوم كلَّما ازداد سطوع الضوء الساقط على بؤبؤ العين تقلَّصت مساحة البؤبؤ.

يُستعمَل الاقتران: $\frac{40+24b^{0.4}}{1+4b^{0.4}}$ لحساب مساحة يُستعمَل الاقتران: $\frac{40+24b^{0.4}}{1+4b^{0.4}}$ الضوء بؤبؤ العين بالملّيمترات المُربَّعة، حيث b مقدار سطوع الضوء بوحدة اللومن (lm).

وتُعرَف حساسية العين للضوء بأنَّها مشتقة ا اقتران مساحة البؤبؤ بالنسبة إلى السطوع. أجداقترانًا يُمثِّل حساسية العين للضوء.

8
$$f(x) = \frac{3(1-\sin x)}{2\cos x}$$

 $f(x) = (x+1)e^x$

أجد معادلة المماس لكل اقتران ممّا يأتي عند النقطة المعطاة:

10
$$f(x) = x^2 \cos x, \left(\frac{\pi}{2}, 0\right)$$

1
$$f(x) = \frac{1 + \sin x}{\cos x}, (\pi, -1)$$

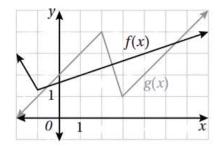
$$f(x) = x \cot x$$

$$f(x) = 4x - x^2 \tan x$$

$$f(x) = \frac{\cos x}{x^2}$$

$$f(x) = x \left(1 - \frac{4}{x+3}\right)$$

يُبيِّن الشكل المجاور منحنيي الاقترانين: g(x)، وg(x). إذا كان: يُبيِّن الشكل المجاور منحنيي الاقترانين: $v(x) = \frac{f(x)}{g(x)}$ ، وكان: u(x) = f(x)g(x)



15
$$u'(1)$$

16
$$v'(4)$$

: آنْ نَانَ:
$$f(x) = x \sec x$$
 إذا كان: $f'(x) = \sec x (1 + x \tan x)$

12
$$f(x) = \frac{2x-1}{x^2}$$

13
$$h(x) = \frac{x^2}{x^2 + 1}$$

$$g(x) = \frac{8(x-2)}{e^x}$$

$$f''(x)$$
 و $f'(x)$ و $f'(x)$ و الجدا كان: $f(x) = \frac{\ln x}{x}$ و الجدا كان: 18

يعطى طول مستطيل بالمقدار 5 + 6t، ويعطى عرضه بالمقدار \sqrt{t} ، حيث t الزمن بالثواني، والأبعاد بالسنتيمترات. أجد مُعدَّل تغيُّر مساحة المستطيل بالنسبة إلى الزمن.

يُمثِّل الاقتران: $0 \geq 0$, $t \geq 0$, $v(t) = \frac{10}{2t+15}$, $t \geq 0$ يُمثِّل الاقتران: v مستقيم، حيث تقاس v بالقَدم لكل ثانية:

t = 5 أجد تسارع السيّارة عندما أجد $\mathbf{0}$

t = 20 أجد تسارع السيّارة عندما 20

الدرس الثالث

قاعدة السلسلة

تعلَّمْتُ سابقًا إيجاد مشتقة الاقتران الناتج من تركيب اقتراني قوَّة، وذلك بإيجاد مشتقة الاقتران الخارجي وقيمته عند الاقتران الداخليي، ثمَّ ضربه في مشتقة الاقتران الداخلي. تُعَدُّ هذه الطريقة

، إحـدى أهـم قواعـد الاشـتقاق، وتُسـمّى <mark>قاعـدة السلسـلة</mark> فمشلًا، يُمكِن إيجاد مشتقة الاقتران المُركّب:

اقتــران $u = 5x^3 - 2x$ المنان الم اقتــران داخلــي، و $y=u^4$ اقتــران خارجــي، علــي النحــو الآتي:

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
 قاعدة السلسلة

$$=4u^3 \times (15x^2 - 2)$$
 $\frac{du}{dx} = 15x^2 - 2, \frac{dy}{dx} = 4u^3$ بتعویض

$$= 4(5x^3 - 2x)^3 (15x^2 - 2) u = 5x^3 - 2x$$
بتعویض

أتذكّر $h(x) = (5x^3 - 2x)^4$ الخارجي

قاعدة السلسلة The Chain Rule

بوجه عام، يُمكِن إيجاد مشتقة الاقتران الناتج من تركيب اقترانين كما يأتي:

قاعدة السلسلة

إذا كان f(x) و g(x) اقترانين، فإنَّه يُمكِن إيجاد مشتقة الاقتران المُركَّب: :باستعمال القاعدة الآتية ($f \circ g$) باستعمال القاعدة الآتية

 $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$ وبصيغة أُخرى، إذا كان: y = f(u)، وكان: u = g(x)، فإنَّ: u = g(x) عندما قيمة $\frac{dy}{du}$ عندما ، $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

أتذكَّر

يُعبِّر الرمز $\frac{dy}{du}$ عن مُعدَّل تغيُّر y بالنسبة إلى u، ويُعبِّرُ الرمز $\frac{du}{dx}$ عن مُعدَّل تغيُّر u بالنسبة إلى x.

وبكلمات أُخرى، مشتقة الاقتران المُركَّب f(g(x)) هي حاصل ضرب مشتقة الاقتران الخارجي f عند الاقتران g(x) الداخلي g(x) في مشتقة الاقتران الداخلي يُمكِن التوصُّل إلى النتائج الآتية عند تطبيق قاعدة السلسلة لإيجاد مشتقة اقترانات ناتجة من تركيب اقترانين، أحدهما اقتران مثلثي، أو اقتران أُسِّي طبيعي، أو اقتران لوغاريتمي طبيعي:

قاعدة السلسلة والاقترانات المشهورة

نتائج

إذا كان (g(x) اقتر انًا، فإنَّ:

$$\frac{d}{dx}\left(\sin g(x)\right) = \cos\left(g(x)\right) \times g'(x) \qquad \qquad \frac{d}{dx}\left(\csc g(x)\right) = -\csc\left(g(x)\right) \cot\left(g(x)\right) \times g'(x)$$

$$\frac{d}{dx}\left(\cos g(x)\right) = -\sin\left(g(x)\right) \times g'(x) \qquad \qquad \frac{d}{dx}\left(\sec g(x)\right) = \sec\left(g(x)\right) \tan\left(g(x)\right) \times g'(x)$$

$$\frac{d}{dx}\left(\tan g(x)\right) = \sec^{2}\left(g(x)\right) \times g'(x) \qquad \qquad \frac{d}{dx}\left(\cot g(x)\right) = -\csc^{2}\left(g(x)\right) \times g'(x)$$

$$\frac{d}{dx}\left(\exp\left(g(x)\right)\right) = e^{g(x)} \times g'(x) \qquad \qquad \frac{d}{dx}\left(\ln g(x)\right) = \frac{g'(x)}{g(x)}$$

مثال 1

ر أتحقَّق من فهمي أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = \tan 3x^2$$

$$b) f(x) = e^{\ln x}$$

c)
$$f(x) = \ln(\cot x)$$

أجد مشتقة كل اقتران ممّا يأتي:

$$f(x) = \cos 2x$$

$$f(x) = \cos 2x$$

$$g(x) = 2x : \cos g(x)$$

$$f'(x) = \frac{d}{dx}(\cos 2x) = -\sin 2x \times 2$$

$$= -2\sin 2x$$

$$f(x)=e^{(x+x^2)}$$
 $g(x)=x+x^2$ مشتقة $e^{g(x)}$ حيث: $e^{g(x)}$ حيث $f'(x)=rac{d}{dx}(e^{(x+x^2)})=e^{(x+x^2)} imes(1+2x)$

$$f(x) = \ln(\sin x)$$

$$f(x) = \ln(\sin x)$$

$$g(x) = \sin x : -\sin g(x)$$

$$f'(x) = \frac{d}{dx} \left(\ln(\sin x)\right) = \frac{\cos x}{\sin x}$$

$$= \cot x$$

 $2 f(x) = e^{(x+x^2)}$

أَتَذَكُّر
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$
 $\frac{d}{dx}(e^x) = e^x$

3
$$f(x) = \sqrt{\ln x}$$

$$f(x) = \sqrt{\ln x} = (\ln x)^{1/2}$$
 بكتابة الاقتران في صورة أُسِّية

$$f'(x) = \frac{1}{2} (\ln x)^{-1/2} \times \frac{d}{dx} (\ln x)$$
 قاعدة سلسلة القوَّة $= \frac{1}{2} (\ln x)^{-1/2} \times \frac{1}{x}$ $\ln x$ باشتقاق $= \frac{1}{2x\sqrt{\ln x}}$ الصورة الجذرية

إذا كان (g(x) اقتر انًا، فإنَّ:

$$.\left(\sqrt{g(x)}\right)' = \frac{g'(x)}{2\sqrt{g(x)}}$$

أُفكِّر

ما وجه الاختلاف بين الاقتران:

$$f(x) = \tan^4 x$$

$$: والاقتران ?h(x) = \tan x^4$$

قاعدة سلسلة القوَّة

يُعَدُّ الاقتران المُركَّب الذي يكون في صورة " f(x) = (g(x)) أحد أكثر الاقترانات المُركَّبة شيوعًا، وتُمثِّل مشتقته حالة خاصة من قاعدة السلسلة، وتُسمّى قاعدة سلسلة القهَّة

حيث الاقتران الخارجي هو اقتران قوّة.

قاعدة سلسلة القوَّة

مفهوم أساسي

إذا كان n أيَّ عدد حقيقي، وكان: u=g(x) اقترانًا، فإنَّه يُمكِن إيجاد مشتقة u=g(x) على النحو الآتي: $\frac{d}{dx} \big(g(x)\big)^n = n \big(g(x)\big)^{n-1} \times g'(x)$ وبصيغة أُخرى، فإنَّ:

$$\frac{d}{dx}(u^n) = nu^{n-1} \times \frac{du}{dx}$$

مثال 2

أجد مشتقة كل اقتران ممّا يأتي:

1
$$f(x) = \sqrt[3]{(x^2-1)^2}$$

$$f(x) = (x^2 - 1)^{2/3}$$
 بكتابة الاقتران في صورة أُسّية

$$f'(x) = \frac{2}{3}(x^2 - 1)^{-1/3} \times \frac{d}{dx}(x^2 - 1)$$
قاعدة سلسلة القوَّة
$$= \frac{2}{3}(x^2 - 1)^{-1/3} \times 2x \qquad x^2 - 1$$
 باشتقاق $\frac{4x}{3\sqrt[3]{x^2 - 1}}$ الصورة الجذرية

$$2 f(x) = \tan^4 x$$

41

$$f(x)= an^4x=(an x)^4$$
 بإعادة كتابة الاقتران المعطى $f'(x)=4\ (an x)^3 imes rac{d}{dx}\ (an x)$ قاعدة سلسلة القوَّة

 $= 4 \tan^3 x \times \sec^2 x$

باشتقاق tan x

🥻 أتحقَّق من فهمي

أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = \sqrt[5]{(x^2 - 1)^2}$$

الاستعمال المُتكرِّر لقاعدة السلسلة

أحتاج أحيانًا إلى استعمال قاعدة السلسلة أكثر من مَرَّة لإيجاد y = f(u), u = g(x), x = h(t) المشتقة. فمثلًا، إذا كان t و t و اقترانات، فإنَّه يُمكِن إيجاد مشتقة t بالنسبة إلى t باستعمال قاعدة السلسلة مَرَّتين كالآتى:

$$\frac{dy}{dt} = \frac{dy}{du} \times \frac{du}{dt} = \frac{dy}{du} \times \frac{du}{dx} \times \frac{dx}{dt}$$

مثال 3

أجد مشتقة كل اقتران ممّا يأتي:

$$1 f(x) = e^{\csc 4x}$$

الاقتران المعطى

$$f(x) = e^{\csc 4x}$$

 $g(x) = \csc 4x$ حيث: $e^{g(x)}$ مشتقة

$$f'(x) = e^{\csc 4x} \times \frac{d}{dx} (\csc 4x)$$

g(x) = 4x:حيث $\csc g(x)$ مشتقة

$$= e^{\csc 4x} \times -\csc 4x \times \cot 4x \times \frac{d}{dx} (4x)$$

بالتبسيط

$$= -4e^{\csc 4x} \csc 4x \cot 4x$$

$$\mathbf{b}) \ f(x) = \sqrt{\cos x}$$

c)
$$f(x) = (\ln x)^5$$

b)
$$f(x) = (2 + (x^2 + 1)^4)^3$$

مثال 4

$$f(x)=e^{-0.2x}\sin 4x$$
 : أجد ميل المماس لمنحنى الاقتران $x=rac{\pi}{8}$ عندما

الاقتران المعطى

$$f(x) = e^{-0.2x} \sin 4x$$

$$f'(x) = e^{-0.2x} \frac{d}{dx} (\sin 4x) + \sin 4x \frac{d}{dx} (e^{-0.2x})$$

$$= e^{-0.2x} \times 4\cos 4x + \sin 4x \times -0.2e^{-0.2x}$$

بإعادة كتابة الاقتران

$$= 4e^{-0.2x}\cos 4x - 0.2e^{-0.2x}\sin 4x$$

$$f'(\frac{\pi}{8}) = 4e^{-0.2(\pi/8)}\cos 4(\frac{\pi}{8}) - 0.2e^{-0.2(\pi/8)}\sin 4(\frac{\pi}{8})$$

$$= -0.2e^{-0.025\pi}$$

$$2 f(x) = \sin\left(\tan\sqrt{3x^2 + 4}\right)$$
الاقتران المعطى

$$f(x) = \sin\left(\tan\sqrt{3x^2 + 4}\right)$$
 مشتقة (sin $g(x)$ مشتقة ،

$$g(x) = \tan \sqrt{3x^2 + 4}$$

$$f'(x) = \cos\left(\tan\sqrt{3x^2 + 4}\right) \times \frac{d}{dx}\left(\tan\sqrt{3x^2 + 4}\right)$$

شتقة $\tan g(x)$ عيث:

$$g(x) = \sqrt{3x^2 + 4}$$

$$= \cos\left(\tan\sqrt{3x^2 + 4}\right) \times \sec^2\sqrt{3x^2 + 4} \times \frac{d}{dx}\left(\sqrt{3x^2 + 4}\right)$$

بكتابة
$$\sqrt{3x^2+4}$$
 في صورة أُسِّية

$$=\cos\left(\tan\sqrt{3x^2+4}\right) imes \sec^2\sqrt{3x^2+4} imes rac{d}{dx}(3x^2+4)^{rac{1}{2}}$$
قاعدة سلسلة القوَّة

$$= \cos(\tan\sqrt{3x^2+4}) \times \sec^2\sqrt{3x^2+4} \times \frac{1}{2} (3x^2+4)^{-1/2} \times \frac{d}{dx} (3x^2+4)$$

$$3x^2 + 4$$
 باشتقاق $4x^2 + 4$ $= \cos(\tan\sqrt{3x^2 + 4}) \times \sec^2\sqrt{3x^2 + 4} \times \frac{1}{2}(3x^2 + 4)^{-1/2} \times 6x$

$$\frac{3x\cos(\tan\sqrt{3x^2+4})\times\sec^2\sqrt{3x^2+4}}{\sqrt{3x^2+4}}$$
 لصورة الجذرية، والتبسيط

🍂 أتحقَّق من فهمي

أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = \cos^2(7x^3 + 6x - 1)$$

بطريقة أخرى؟

🥒 أتحقَّق من فهمي

ياً أجد ميل المماس لمنحنى الاقتران: x = 1 عندما $f(x) = (2x+1)^5 (x^3 - x + 1)^4$

أجد ميل العمودي على المماس لمنحنى الاقتران:
$$x = \frac{\pi}{2} \text{ aich} f(x) = \frac{\cos^2 x}{e^{2x}}$$

: أجد ميل العمو دي على المماس لمنحنى الاقتران
$$x = 0$$
 عندما $f(x) = \left(\frac{3x-1}{x^2+3}\right)^2$

الاقتران المعطى

$$f(x) = \left(\frac{3x-1}{x^2+3}\right)^2$$

قاعدة سلسلة القوَّة

$$f'(x) = 2\left(\frac{3x-1}{x^2+3}\right) \times \frac{d}{dx}\left(\frac{3x-1}{x^2+3}\right)$$

باعدة مشتقة القسمة

$$= 2\left(\frac{3x-1}{x^2+3}\right) \times \left(\frac{(x^2+3)(3)-(3x-1)(2x)}{(x^2+3)^2}\right)$$

$$2(3x-1)(-3x^2+2x+9)$$

 $=\frac{2(3x-1)(-3x^2+2x+9)}{(x^2+3)^3}$

x = 0 بتعویض

$$f'(0) = \frac{2(3(0) - 1)(-3(0)^2 + 2(0) + 9)}{((0)^2 + 3)^3}$$

بالتبسيط

$$=\frac{-18}{27}=\frac{-2}{3}$$

 $\frac{-2}{3}$: هو x=0 عندما x=0 هو إذن، ميل المماس لمنحنى الاقتران

ومنه، فإنَّ ميل العمودي على المماس عندما x=0 هو:

🔵 مثال 5 : من الحياة

أعمال: طرحت إحدى الشركات مُنتَجًا جديدًا في الأسواق، ثمَّ رصدت عدد القطع المَبيعة منذ طرحه.

إذا مثّـل الاقتـران:
$$N(t) = \frac{250000 \, t^2}{(2t+1)^2}, \, t > 0$$
 عـدد القطع المَبيعة منذ طرح هذا المُنتَج، حيث t الزمن بالأسابيع، فأُجيب عن السؤالين الآتيين تباعًا:

أجد مُعدَّل تغيُّر عدد القطع المَبيعة بالنسبة إلى الزمن.

:N'(t) أجد

$$N(t) = \frac{250000 \, t^2}{(2t+1)^2}$$
قاعدة مشتقة القسمة
$$N'(t) = \frac{(2t+1)^2 \, \frac{d}{dt} (250000 \, t^2) - (250000 \, t^2) \, \frac{d}{dt} (2t+1)^2}{((2t+1)^2)^2}$$
قاعدتا مشتقة اقتران $\frac{d}{dt} (2t+1)^2$

$$= \frac{(2t+1)^2 (500000 \, t) - (250000 \, t^2) \, 2(2t+1) \times 2}{(2t+1)^4}$$

$$= \frac{(2t+1)^2 (500000 \, t) - (1000000 \, t^2) (2t+1)}{(2t+1)^4}$$

$$= \frac{(2t+1)^2 (500000 \, t) - (1000000 \, t^2) (2t+1)}{(2t+1)^4}$$

$$= \frac{(2t+1)(500000 \, t) ((2t+1) - 2t)}{(2t+1)^4}$$

أفسّر معنى الناتج. N'(52)، ثمَّ أُفسّر معنى الناتج.

بقسمة البسط والمقام على (2t+1)

:N'(52) أجد

$$N'(t) = rac{500000 \, t}{\left(2t+1
ight)^3}$$
 $N(t)$ مشتقة الاقتران $N'(52) = rac{500000 \, (52)}{\left(2(52)+1
ight)^3}$ $t=52$ باستعمال الآلة الحاسبة

إذن، 22 = (52) N، وهذا يعني أنَّ إجمالي عدد القطع المَبيعة من المُنتَج يزداد بمُعدَّل 22 قطعة لكل أسبوع بعد مرور 52 أسبوعًا على طرح المُنتَج في الأسواق.

🌈 أتحقَّق من فهمي

تُحسَب قيمة بدل الخدمة لأحد المُنتَجات بالدينار باستعمال الاقتران: $U(x)=80\,\sqrt{rac{2x+1}{3x+4}}$

a) أجد مُعدَّل تغيُّر قيمة بدل الخدمة بالنسبة إلى عدد القطع المَبيعة من المُنتَج.

لناتج. (b) أجد U'(20)، ثمَّ أُفسِّر معنى الناتج.

مثال 6

أجد مشتقة كل اقتران ممّا يأتي:

$$1 f(x) = 8^{5x}$$

$$f(x) = 8^{5x}$$
 الاقتران المعطى

$$f'(x) = (\ln 8)8^{5x}$$
 (5) = (5 ln 8)8^{5x} $a^{g(x)}$ مشتقة

$$2 f(x) = 6^{x^2}$$

$$f(x) = 6^{x^2}$$
 الاقتران المعطى

$$f'(x) = (\ln 6)6^{x^2} (2x) = (2x \ln 6)6^{x^2}$$
 مشتقة

$$3 f(x) = e^{3x} + 2^{3x}$$

$$f(x) = e^{3x} + 2^{3x}$$
 الاقتران المعطى

$$f'(x) = 3e^{3x} + (3 \ln 2)2^{3x}$$
 هشتقة $e^{g(x)} = 3x$ عيث: $e^{g(x)}$ مشتقة ومشتقة المجموع $e^{g(x)}$

🎤 أتحقَّق من فهمي

أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = \pi^{\pi x}$$

$a^{(g(x))}$ مشتقة

تعلَّمْتُ سابقًا كيف أجد مشتقة الاقتران الأُسِّي الطبيعي:
$$f(x) = e^x$$
: $f(x) = e^x$: $f(x) = a^x$: $f(x) = a^x$:

 e^x يُمكِن استعمال خصائص اللوغاريتمات لكتابة a^x بدلالة عمر حيث a عدد حقيقي موجب، و $a \neq 1$ ، كما يأتى:

$$a^{x}=e^{\ln a^{x}}$$
 الخصائص الأساسية في اللوغاريتمات

$$a^x = e^{x \ln a}$$
 قانون القوَّة في اللوغارية مات

:يمكِن إيجاد مشتقة a^{x} باستعمال قاعدة السلسلة كما يأتي

$$rac{d}{dx}(a^x) = rac{d}{dx}(e^{x \ln a})$$
 a^x مشتفه $e^{x \ln a} \times \ln a$ $a = a^x \times \ln a$ $a = a^x$

$$\frac{d}{dx}(a^x) = a^x \times \ln a$$
 إذْن

: اقتران، كما يأتي g(x) حيث $a^{g(x)}$ على ما سبق، يُمكِن إيجاد مشتقة

مشتقة مقتشه

نظرية

إذا كان a عددًا حقيقيًّا موجبًا، و $1 \neq a$ ، وكان g(x) اقترانًا، فإنَّ:

$$\frac{d}{dx}(a^x) = a^x \times \ln a \qquad \qquad \frac{d}{dx}(a^{g(x)}) = \ln a \times a^{g(x)} \times g'(x)$$

مسل مستظلُّ النظريــة صحيحة اذا كان a = 1،

بناءً على ما سبق، يُمكِن إيجاد مشتقة $\log_a g(x)$ حيث g(x) اقتران، كما يأتي:

مشتقة (x) مشتقة

نظرية

إذا كان a عددًا حقيقيًّا مو جبًا، و $a \neq 1$ ، وكان g(x) اقترانًا، فإنَّ:

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a} \qquad \qquad \frac{d}{dx}(\log_a g(x)) = \frac{g'(x)}{(\ln a)g(x)}$$

أتذكّر

عند التعامل مع الاقتران:
$$f(x) = \log_a g(x).$$
 فإنَّ $g(x) > 0$

مثال 7

أجد مشتقة كل اقتران ممّا يأتي:

$$f(x) = \log \cos x$$

الاقتران المعطي

$$f'(x) = \frac{-\sin x}{(\ln 10)\cos x}$$

 $\log_a g(x)$ مشتقة

$$=-\frac{\tan x}{\ln 10}$$

المتطابقات النسبية

 $2 f(x) = \log_2\left(\frac{x^2}{x-1}\right)$

قانون القسمة في

اللوغاريتمات $f(x) = \log_2\left(\frac{x^2}{x-1}\right) = \log_2 x^2 - \log_2(x-1)$

$$f'(x) = \frac{2x}{(\ln 2) x^2} - \frac{1}{(\ln 2) (x-1)}$$

مشتقة $\log_a g(x)$ مشتقة وقاعدة مشتقة الطرح

$$= \frac{2}{(\ln 2) x} - \frac{1}{(\ln 2) (x-1)}$$

بالتبسيط

أتذكّر يُكتّب اللوغاريتم الاعتيادي عادةً من دون أساس، حيث إنَّ أساسه 10

b)
$$f(x) = 6^{1-x^3}$$

c)
$$f(x) = e^{4x} + 4^{2x}$$

$\log_a g(x)$ مشتقة

a عدد حقيقي موجب، a عدد حقيقي موجب، و $a \neq 1$ ، أستعمل صيغة تغيير الأساس في اللوغاريتمات ، لكتابة log a بدلالة اللوغاريتم الطبيعي، ثمَّ أجد المشتقة كما يأتي:

$$\log_a x = \frac{\ln x}{\ln a}$$

صيغة تغيير الأساس

$$\frac{d}{dx}(\log_a x) = \frac{d}{dx} \left(\frac{\ln x}{\ln a} \right)$$

بإيجاد المشتقة

$$=\frac{1}{\ln a}\times\frac{d}{dx}(\ln x)$$

 $\frac{1}{\ln a}$ يإخراج الثابت

$$=\frac{1}{\ln a} \times \frac{1}{x}$$

مشتقة الاقتران اللوغاريتمي الطبيعي

$$=\frac{1}{x \ln a}$$

بالتبسيط

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$
 إذن:

أتذكّر

$$\log_b x = \frac{\ln x}{\ln b}$$

🧨 أتحقَّق من فهمي

أجد مشتقة كل اقتران ممّا يأتي:

a)
$$f(x) = \log \sec x$$

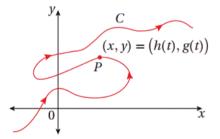
b) $f(x) = \log_8 (x^2 + 3x)$

مشتقة المعادلات الوسيطية

يُبيِّن الشكل المجاور الجُسَيْم P الذي يتحرَّك على المنحنى C لحظة مروره بالنقطة (x,y).

أُلاحِظُ الْمنحنى C لا يُحقِّق اختبار الخطِّ الرأسي؛ لذا لا يُمكِن إيجاد علاقة واحدة فقط في صورة (x,y) تربط جميع قِيَم x بقِيم y المُناظِرة لها على المنحنى. ولكنْ، يُمكِن كتابة كلِّ من الإحداثي x والإحداثي y في صورة اقتران كلً من الإحداثي x والإحداثي y في صورة اقتران بالنسبة إلى الزمن t كما يأتي:

$$x = h(t), \quad y = g(t)$$



يُشكِّل هذان الاقترانان معًا معادلة وسيطية للمنحنى C، ويُسمِّى t المُتغيِّر الوسيط لان كل قيمة له المنحدد قيمة للمُتغيِّر x، وقيمة آخرى للمُتغيِّر y. وعند تمثيل الأزواج المُرتَّبة (x, y) في المستوى الإحداثي، اينتج المنحنى C.

يُمكِن تحديد قِيَم المُتغيِّر t عن طريق فترة تُسمِّى مجال الوسيط لأنَّ النقاط على المنحنى قد تتكرَّر بعد هذه الفترة.

$$x = h(t)$$
 , $y = g(t)$

$$\underbrace{t_0 \leq t \leq t_1}_{\text{a.s.}}$$
 and the multiple of the second seco

48

مثال 8

 $t=rac{\pi}{4}$ أجد معادلة مماس منحنى المعادلة الوسيطية الآتية عندما

$$x = 2\sin t$$
, $y = 3\cos t$, $0 \le t \le 2\pi$

$$t=rac{\pi}{4}$$
 الخطوة 1: أجد ميل المماس عندما

$$\frac{dx}{dt} = 2 \cos t$$

$$t$$
 بإيجاد مشتقة x بالنسبة إلى المُتغيِّر

$$\frac{dy}{dt} = -3 \sin t$$

$$t$$
 بإيجاد مشتقة y بالنسبة إلى المُتغيَّر

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

مشتقة المعادلة الوسيطية

$$= \frac{-3\sin t}{2\cos t} \qquad \frac{dy}{dt} = -3\sin t, \frac{dx}{dt} = 2\cos t$$

$$=-\frac{3}{2} \tan t$$
 المتطابقات النسبية

$$\frac{dy}{dx}\big|_{t=\frac{\pi}{4}} = -\frac{3}{2}\tan\frac{\pi}{4}$$

$$t=rac{\pi}{4}$$
بتعويض

$$=-\frac{3}{2}$$

بإيجاد الناتج

أتذكّر

$$\frac{dy}{dx}\Big|_{x=a}$$
 يُستعمَل الرمز:

للدلالة على قيمة المشتقة

$$x = a$$
عندما

 $t = \frac{\pi}{4}$ الخطوة 2: أجد x وy عندما

$$x = 2 \sin \frac{\pi}{4} = \frac{2}{\sqrt{2}}$$

$$t = \frac{\pi}{4}$$
بتعویض

$$y = 3 \cos \frac{\pi}{4} = \frac{3}{\sqrt{2}}$$

$$t = \frac{\pi}{4}$$
بتعویض

$$x = \frac{2}{\sqrt{2}}, y = \frac{3}{\sqrt{2}}$$
: إذْن

الخطوة 3: أجد معادلة المماس.

$$y - y_1 = m(x - x_1)$$

$$y - \left(\frac{3}{\sqrt{2}}\right) = -\frac{3}{2}\left(x - \frac{2}{\sqrt{2}}\right)x_1 = \frac{2}{\sqrt{2}}, y_1 = \frac{3}{\sqrt{2}}, m = -\frac{3}{2}$$
 بتعویض

$$2y + 3x = 6\sqrt{2}$$

بإعادة كتابة المعادلة

49

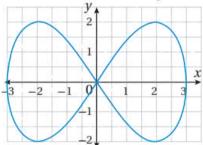
يُبيِّن الشكل المجاور منحنى المعادلة الوسيطية:

$$x = 3\cos t, y = 2\sin 2t,$$

$$0 \le t \le 2\pi$$

يُمكِن إيجاد $\frac{dy}{dx}$ لهذه المعادلة الوسيطية بإيجاد مشتقة كلًى من x وy بالنسبة إلى الوسيط t أوَّ لًا، ثمَّ استعمال

قاعدة السلسلة على النحو الآتي:



$$\frac{dx}{dt} = -3 \sin t$$

$$t$$
بإيجاد مشتقة x بالنسبة إلى المُتغيِّر

$$\frac{dy}{dt} = 4\cos 2t$$

$$t$$
 بإيجاد مشتقة y بالنسبة إلى المُتغيِّر

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dx}}$$

$$\frac{dx}{dt} \neq 0$$
 : حيث ، $\frac{dx}{dt}$ على المعادلة على ال

$$= \frac{4\cos 2t}{-3\sin t}$$

$$\frac{dy}{dt} = 4\cos 2t, \frac{dx}{dt} = -3\sin t$$
 بتعویض

بناءً على ما سبق، يُمكِن إيجاد مشتقة أيِّ معادلة وسيطية كما يأتي:

مشتقة المعادلة الوسيطية

مفهوم أساسي

إذا كان h و g اقترانين بالنسبة إلى المُتغيِّر الوسيط t، وكان x = h(t)، وأذا كان h وأذا كان h إذا كان h وأذا كان أذا كان h وأذا كان أذا كان h وأذا كان h وأذا كان h وأذا كان أذا كان أذ

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \frac{dx}{dt} \neq 0$$

أُتدرَّب وأخلُّ المسائل

أجد مشتقة كل اقتران ممّا يأتي:

$$f(x) = 50e^{2x-10}$$

$$(3) f(x) = \cos(x^2 - 3x - 4)$$

🥻 أتحقَّق من فهمي

 $t=rac{\pi}{4}$ أجد معادلة مماس منحني المعادلة الوسيطية الآتية عندما

$$x = \sec t$$
, $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$

8
$$f(x) = \ln\left(\frac{1+e^x}{1-e^x}\right)$$

$$f(x) = \sqrt{\frac{x+1}{x}}$$

$$f(x) = x^2 \tan \frac{1}{x}$$

$$10 f(x) = \sin \sqrt[3]{x} + \sqrt[3]{\sin x}$$

$$f(x) = 3x - 5\cos(\pi x)^2$$

$$f(x) = \sqrt[5]{x^2 + 8x}$$

$$\mathbf{15} \ f(x) = \left(\frac{\sin x}{1 + \cos x}\right)^2$$

(12)
$$f(x) = \frac{3^{2x}}{x}$$

$$f(x) = 2^{-x} \cos \pi x$$

(1)
$$f(x) = \log_3 (1 + x \ln x)$$

$$f(x) = \frac{10 \log_4 x}{x}$$

(1)
$$f(x) = 2^x, x = 0$$

$$f(x) = \tan^4(\sec(\cos x))$$

أجد معادلة المماس لكل اقتران ممّا يأتي عند قيمة x المعطاة:

$$(9) f(x) = 4e^{-0.5x^2}, x = -2$$

(2)
$$f(x) = \sqrt{x+1} \sin \frac{\pi x}{2}, x = 3$$

20
$$f(x) = x + \cos 2x$$
, $x = 0$

:دا کان A(x) = f(g(x)) وکان (33)

$$f(-2) = 8, f'(-2) = 4, f'(5) = 3,$$

$$g(5) = -2, g'(5) = 6$$

فأجــد (5).A

بكتيريا: يُمثِّل الاقتران:
$$Ne^{0.1t}$$
 البكتيرية بكتيريا: يُمثِّل الاقتران: $A(t)=Ne^{0.1t}$ البكتيري: بعد t ساعة في مجتمع بكتيري:

25 أجد مُعدَّل نمو المجتمع بعد 3 ساعات بدلالة الثابت N.

$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
: إذا كان إذا كان $f'(x) = \frac{1}{\sqrt{(x^2 + 1)^3}}$

وَذَا كَانَ مُعَدَّلُ نِمُو المجتمع بعد k ساعة هو 0.2 خلية لكل ساعة، فما قيمة k بدلالة الثابت N؟

أجد المشتقة العليا المطلوبة في كلِّ ممّا يأتي:

$$f(x) = \sin \pi x, f'''(x)$$

$$f(x) = \sin \pi x, f'''(x)$$

28
$$f(x) = \cos(2x+1), f^{(5)}(x)$$

اذا كان الاقتران: $y=e^{\sin x}$ ، فأجد ميل مماس منحنى $y=e^{\sin x}$

الاقتران عند النقطة (0,1).

29
$$f(x) = \cos x^2, f''(x)$$

الحل:

$$f(x) = \cos x^{2}$$

$$f'(x) = -2x \sin x^{2}$$

$$f''(x) = (-2x)(2x \cos x^{2}) + (\sin x^{2})(-2)$$

$$= -4x^{2} \cos x^{2} - 2\sin x^{2}$$

زنبرك: تتحرَّك كرة مُعلَّقة بزنبرك إلى الأعلى وإلى الأسفل، أجد معادلة المماس لمنحنى كل معادلة وسيطية ممّا يأتي عند

35
$$x = t + 2, y = t^2 - 1, t = 1$$

- ويُمثِّل الاقتران: $s(t)=0.1\sin 2.4t$ ويُمثِّل الاقتران: $s(t)=0.1\sin 2.4t$ المعطاة: زمن لاحق، حيث t الزمن بالثواني، وs الموقع بالسنتيمترات:
 - t=1 أجد سرعة الكرة عندما أ

(33) أجد موقع الكرة عندما تكون سرعتها صفرًا.

🐠 أجد موقع الكرة عندما يكون تسارعها صفرًا.

36 $x = \frac{t}{2}, y = t^2 - 4, t = -1$

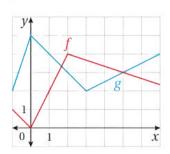
37)
$$x = t - \sin t, y = 1 - \cos t, t = \frac{\pi}{3}$$

يعطى منحنى بالمعادلة الوسيطية:
$$x = 2(t - \sin t), y = 2(1 - \cos t)$$
 حيث: $0 \le t \le 2\pi$ أثبت أنَّ ميل المماس وميل العمودي على المماس لمنحنى هذه العلاقة عندما $\frac{\pi}{4}$ هما: $1 + \sqrt{2}$ هما $1 + \sqrt{2}$ هما الترتيب.

38
$$x = \sec^2 t - 1, y = \tan t, t = -\frac{\pi}{4}$$

41 p'(1)

يُبيِّن الشكل المجاور منحنيي الاقترانين f(x) و g(x). إذا كان: يُبيِّن الشكل المجاور منحنيي الاقترانين p(x)=g(f(x))، وكان: p(x)=g(f(x)) فأجد كُلَّا ممّا يأتي:



40 h'(1)

تبريس : إذا كان الاقتران: $y = \ln(ax + b)$ ، حيث a وd ثابتان موجبان، وكان ميل المماس لمنحنى الاقتران عند النقطة P هو 1، فأُجيب عن الأسئلة الثلاثة الآتية تباعًا:

1 أثبِت أنَّ الإحداثي x للنقطة P أقل من أثبِت أنَّ الإحداثي

النقطة (0,2)، ثمَّ أُبرِّر إجابتي. a وa من a من a أبرِّر إجابتي.

 $\frac{1}{2}$ أجد إحداثيي النقطة التي يكون عندها ميل المماس أجد إحداثي

 $x=t^2$, y=2t : تبرير: يعطى منحنى بالمعادلة الوسيطية

$$t$$
 أجد أجد $\frac{dy}{dx}$ بدلالة أ

تحدًّ: أجد
$$\frac{dy}{dx}$$
 لكلًّ ممّا يأتي:

$$48 \quad y = \sqrt{\sin\sqrt{x}}$$

أجد معادلة العمودي على مماس المنحنى عند النقطة $(a^2, 2a)$.

للم المعمودي على المثلث المُكوَّن من العمودي على المماس، والمحورين الإحداثيين، هي $\left(\frac{1}{2}|a|\left(2+a^2\right)^2\right)$

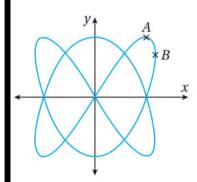
60

وَذَا مَرَّ فرعان من المنحني بنقطة الأصل كما هو مُوضَّح في

الشكل، فأجد ميل المماس لكلِّ منهما عند هذه النقطة.

تحدِّ: يُبيِّن الشكل المجاور منحنى المعادلة الوسيطية:

 $x = \sin 2t$, $y = \sin 3t$, $0 \le t \le 2\pi$



إذا كان مماس منحنى المعادلة أفقيًّا عند النقطة A الواقعة في الربع الأوَّل، فأجد إحداثيي A.

إذا كان مماس المنحنى موازيًا للمحور y عند النقطة B، فأجد إحداثيي B.

متى يعود الجُسَيْم إلى موقعه الابتدائي؟

 $s(t) = \ln(t^2 - 2t + 1.9), t \ge 0$ تبريس : يُمثِّل الاقتران: $0 \ge 0$ الموقع مُسَيْم يتحرَّك في مسار مستقيم، حيث s الموقع بالأمتار، t الزمن بالثواني:

أجد سرعة الجُسَيْم وتسارعه بعد t ثانية.

أجد موقع الجُسَيْم وتسارعه عندما تكون سرعته صفرًا.

6
$$f(x) = 2\cot^2(\pi x + 2)$$

أجد مشتقة كل اقتران ممّا يأتي:

$$100e^{-0.1x}$$

2
$$f(x) = \sin(x^2 + 1)$$

$$f(x) = \cos^2 x$$

$$f(x) = \cos 2x - 2\cos x$$

$$f(x) = \log_3 \frac{x\sqrt{x-1}}{2}$$

$$f(x) = \log 2x$$

8
$$f(x) = \ln(x^3 + 2)$$

$$f(x) = \left(\frac{x^2}{x^3 + 2}\right)^2$$

أجد معادلة المماس لكل اقتران ممّا يأتي عند قيمة \boldsymbol{x} المعطاة:

$$y = 2\sin 5x - 4\cos 3x, x = \frac{\pi}{2}$$

$$f(x) = x^2 \sqrt{20 - x}$$

$$f(x) = \frac{\sin(2x+1)}{e^{x^2}}$$

$$f(x) = (x^2 + 2)^3, x = -1$$

$$f(x) = 3^{\cot x}$$

15
$$f(x) = \tan 3x, x = \frac{\pi}{4}$$

إذا كان الاقتران: $f(x) = 3 \sin x - \sin^3 x$ ، فأُجيب عن السؤالين الآتيين تباعًا:

$$f'(x) = 3\cos^3 x$$
: أُثْنِت أَنَّ 16

.f''(x) أجد 17

18 يعطى منحنى بالمعادلة الوسيطية: $0 \le t \le 2\pi$: حيث $x = a \cos t, y = b \sin t$ b و a بدلالة b بدلالة a و أجد المقطع b بماس المنحنى عندما

- ويكون عندها ميل المماس 1

التي تقع على منحنى الاقتران، P أجد إحداثيي النقطة P التي تقع على منحنى الاقتران،

a>0 إذا كان الاقتران: $y=e^{ax}$ ، حيث a ثابت، و

فأُجيب عن السؤالين الآتيين تباعًا:

و أُثِبِت أَنَّه يُمكِن كتابة معادلة العمودي على المماس k: عند النقطة P في صورة x+y=k، ثمَّ أجد قيمة الثابت

: إذا كان
$$h(x) = \sqrt{4 + 3f(x)}$$
 وكان إذا كان

ا إذا كان:
$$h(x) = \sqrt{4 + 3}f(x)$$
 ، و كان: $h'(1) = \sqrt{4 + 3}f(1) = 4$

$$0 \le \theta \le 2\pi$$
 حيث: $x = \sin^2 \theta, y = 2\cos \theta$

 $\sqrt{2}$ أجد معادلة المماس عندما يكون الميل $\sqrt{2}$

$$\theta$$
 أجد $\frac{dy}{dx}$ بدلالة $\frac{dy}{dx}$

: وَذَا كَانَ الْاَقْتِرِ انّ:
$$f(x) = e^{2x} + e^{-2x}$$
 : وَذَا كَانَ الْاَقْتِرِ انّ $f''(x) = 4f(x)$

$$f(x) = \sin 4x + \cos 4x$$
 إذا كان: $f(x) = \sin 4x + \cos 4x$ إذا كان $f''(x) + 16f(x) = 0$

أجد $(f \circ g)'(x)$ عند قيمة x المعطاة في كلِّ ممّا يأتي:

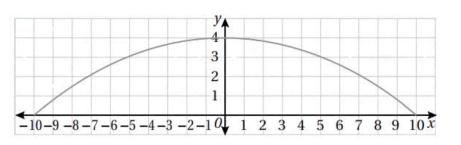
28
$$f(u) = u^5 + 1$$
, $u = g(x) = \sqrt{x}$, $x = 1$

$$f(u) = u + \frac{1}{\cos^2 u}, u = g(x) = \pi x, x = \frac{1}{4}$$

سرعة
$$v(t) = 15t \, e^{-0.05t^2}$$
 سرعة ألم الاقتران: $v(t) = 15t \, e^{-0.05t^2}$ سرعة أبالمتر لكل ثانية) سيّارة تتحرَّك في مسار مستقيم، حيث: $0 \le t \le 10$ أجد سرعة السيّارة عندما يكون تسارعها صفرًا.

الوحدة الثالثة / التفاضل وتطبيقاته

رياضيات متقدم

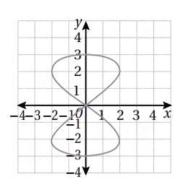


2 _ 19 _ : يُبيِّن التمثيل البياني المجاور شكل مَطَبِّ سرعة أُسيّارات مَطَبِّ سرعة السيّارات على أحد الطرق. وفيه يُمثِّل المحور x سطح الطريق، وتقاس جميع الأطوال بالسنتيمترات.

إذا كانت المعادلة الوسيطية التي تُمثِّل منحنى المَطَبِّ هي: $x = 10 \sin t$, $y = 2 + 2 \cos 2t$ هأ عاب ممّا يأتى:

30 ميل المماس لمنحنى المَطَبِّ بدلالة t.

31 قيمة t عند أعلى نقطة على منحنى المَطَبِّ.



١٤٠ تبرير: يُبيِّن الشكل المجاور منحنى المعادلة الوسيطية:

$$x = 2\sin 2t \,, \ y = 3\cos t \qquad \qquad 0 \le t \le 2\pi$$

أجد ميل المماس لمنحنى المعادلة عند نقطة الأصل، ثمَّ أُبرِّر إجابتي.

